INTERDISCIPLINARY SCIENCE PA3019 EARTH THROUGH TIME

Contents

Contents	2
Welcome	4
Module Authors	4
Problem Statement	5
Staff	6
Learning Objectives	7
Earth Sciences	7
Biology	7
Computing	7
Additional	8
Reading List	9
Websites	9
Excerpts from books	rk not defined.
Scientific Papers	9
A Guide to Module Pacing	12
A Guide to Module Pacing	
-	15
Facilitation Sessions	15 15
Facilitation Sessions	15 15 16
Facilitation Sessions Facilitation Session 01 Facilitation Session 02	15 15 16 17
Facilitation Sessions Facilitation Session 01 Facilitation Session 02 Facilitation Session 03	15 15 16 17 18
Facilitation Sessions Facilitation Session 01 Facilitation Session 02 Facilitation Session 03 Facilitation Session 04	15 15 16 17 18 19
Facilitation Sessions Facilitation Session 01 Facilitation Session 02 Facilitation Session 03 Facilitation Session 04 Facilitation Session 05	15 15 16 17 18 19 20
Facilitation Sessions Facilitation Session 01 Facilitation Session 02 Facilitation Session 03 Facilitation Session 04 Facilitation Session 05 Facilitation Session 06	15 15 16 17 18 19 20 21
Facilitation Sessions Facilitation Session 01 Facilitation Session 02 Facilitation Session 03 Facilitation Session 04 Facilitation Session 05 Facilitation Session 06 Facilitation Session 07	15 1516171819202122
Facilitation Sessions Facilitation Session 01 Facilitation Session 02 Facilitation Session 03 Facilitation Session 04 Facilitation Session 05 Facilitation Session 06 Facilitation Session 07 Facilitation Session 08	15 151617181920212223
Facilitation Sessions Facilitation Session 01 Facilitation Session 02 Facilitation Session 03 Facilitation Session 04 Facilitation Session 05 Facilitation Session 06 Facilitation Session 07 Facilitation Session 08 Facilitation Session 09	15 15161718192021222325
Facilitation Sessions Facilitation Session 01 Facilitation Session 02 Facilitation Session 03 Facilitation Session 04 Facilitation Session 05 Facilitation Session 06 Facilitation Session 07 Facilitation Session 08 Facilitation Session 09 Facilitation Session 10	15 15161718192021222122232526
Facilitation Sessions Facilitation Session 01 Facilitation Session 02 Facilitation Session 03 Facilitation Session 04 Facilitation Session 05 Facilitation Session 06 Facilitation Session 07 Facilitation Session 08 Facilitation Session 10 Facilitation Session 11	15 1516171819202122212223252627

Deliverables	30
Core Learning Exercise 01	31
Core Learning Exercise 02	32
Core Learning Exercise 03	33
Core Learning Exercise 04	34
Deliverable 01: Vidcast Series Outline	35
Deliverable 02: Support Pack	36
Deliverable 03: Vidcast Episode	37
Meta tags	38
Additional Information	38

Welcome

The Earth Through Time module examines our planet in terms of its major systems; the atmosphere, hydrosphere, cryosphere, geosphere and the biosphere, all of which are constantly interacting. The module explores the topic of climate change throughout Earth's history; climate change is not just a contemporary phenomenon, it has happened in the geological past at times abruptly and catastrophically.

In order to understand climate change it is important to understand its history. Ice cores hold key evidence for the Quaternary climate record, whilst isotope and rock records contain relatively less well preserved data for the pre-Quaternary climate. You will also develop an understanding of simple and complex climate models and how they are used to simulate the past and current climate as well as predicting future climatic change.

Module Authors

Prof. Derek Raine, Dr Jörg Kaduk, Dr Jan Zalasiewicz

Cover Image: Holei Sea Arch at Hawaii Volcanoes National Park by Vlad and Marina Butsky CC-BY

http://www.flickr.com/photos/butsky/357672637/

Problem Statement

Hot Air on Hot Air: Can Technology Fix Global Warming?

By Cameron Scott: July 17, 2007. (http://www.motherjones.com/news/outfront/2007/07/hot_air.html)

Can technology fix global warming? Scientists are starting to pitch some pretty farout ideas, including these:

- PROPOSAL: Use a fleet of blimps to pour up to 4 million tons of sulphur dioxide, which reflects solar radiation, into the stratosphere each year. REALITY CHECK: And you thought weather balloons messed with the UFO crowd.
- PROPOSAL: Position 20 million tons of reflectors between Earth and the sun, 932,000 miles away.
 REALITY CHECK: International Space Station—just 240 miles away—will cost more than \$100 billion.
- 3. **PROPOSAL**: Cover oceans with white Styrofoam beads. **REALITY CHECK**: Marine life and Styrofoam don't mix.
- 4. **PROPOSAL**: Put anti-gas drugs in cow feed to reduce burps laden with methane, a greenhouse gas 21 times more powerful than CO₂. **REALITY CHECK**: This is actually happening...in Scotland.
- 5. **PROPOSAL**: Launch fleet of solar-powered satellites that will transform sunlight into electric power to be delivered to Earth as microwaves or laser beams. **REALITY CHECK**: Everything after "solar-powered satellites" sounds really scary.
- PROPOSAL: Cover large swaths of desert with giant sheets of plastic to reflect sunlight back into space.
 REALITY CHECK: Think Laura Palmer.
- 7. **PROPOSAL**: Send thousands of unmanned yachts to patrol globe and thicken marine clouds by whipping ocean with giant eggbeaters. **REALITY CHECK**: Think Exxon Valdez.
- PROPOSAL: Use large artillery to shoot sulphate into the stratosphere to reflect sunlight and allow Arctic ice to thicken.
 REALITY CHECK: Beware the flight to Reykjavik.
- PROPOSAL: Genetically engineer a creature that would metabolize carbon dioxide.
 REALITY CHECK: They're called trees.
- 10. **PROPOSAL**: Seed oceans with iron to stimulate growth of phytoplankton, microscopic organisms that convert CO₂ into organic matter. **REALITY CHECK**: Being tested, but other micro-creatures would likely eat phytoplankton and emit carbon, neutralizing effect.

11. **PROPOSAL**: Inject diatomaceous earth, the chalky stuff in cat litter, into the stratosphere above Arctic Circle. **REALITY CHECK**: World beholden to Jonny Cat lobby.

Staff

Prof. Derek Raine	Physics
Dr Jörg Kaduk	Geography
Dr Jan Zalasiewicz	Geology

Learning Objectives

Earth Sciences

- Climatology: Evidence preserved within the ice and stratal record, and how to read it and interpret it.
- Geochemistry: Understanding the significance of variations in isotope ratios.
- Geography: Interaction of the various Earth systems.
- Feedback mechanisms and recovery back to a stable climate.
- Major warming events in the Earth's history (Paleocene-Eocene thermal maximum and the Toarcian event).
- Understand the role of mountain belts and ice coverage in climate change.
- Understand the role of methane hydrates; identify current methane hydrate reservoirs and their stability fields.
- Carbon emissions from a variety of sources.
- δ^{13} C incursions.
- Milankovitch cycles.
- D-O and Heinrich events.
- The greenhouse effect; the link to fossil fuels compared to pre-industrial periods.

Biology

- Understand the chemical reactions involved in photosynthesis and the factors controlling them.
- Understand the importance of photosynthesis and the biosphere as an important carbon sink.
- Be aware of carbon capture and sequestration mechanisms.

Computing

- Programming: operate a simple climate model that allows alteration of key parameters to show a change in climate.
- Climate modelling: develop a basic/intermediate understanding of the climate modelling software *Ed*GCM. Using the software to simulate climate change.

Additional

- Understand what the Montreal protocol is, when it was signed and what the result was.
- Understand what the Kyoto agreement is, when it was signed, who signed it and who has yet to sign it.

Reading List

Websites

- <u>http://www.ipcc.ch/</u>
- <u>http://www.snowballearth.org/</u>
- <u>http://education.guardian.co.uk/academicexperts/page/0,1392,13</u>
 <u>60527,00.html</u> (Stratigraphy Commission of the Geological Society of London Global warming: a perspective from earth history.)
- http://www.biologie.uni-hamburg.de/b-online/e24/24b.htm
- <u>http://homepage.mac.com/uriarte/carbon13.html</u>
- <u>http://wc.pima.edu/~bfiero/tucsonecology/plants/plants_photosynthesis.htm</u>
- <u>http://www.esd.ornl.gov/projects/qen/carbon1.html</u>
- <u>http://www.esd.ornl.gov/projects/qen/nerc.html</u>
- http://www2.ocean.washington.edu/oc540/lec01-20/
- <u>http://tracer.env.uea.ac.uk/esmg/papers/Lenton&Huntingford.pdf</u>
- http://www2.ocean.washington.edu/oc540/lec01-28/
- http://www2.ocean.washington.edu/oc540/lec01-30/

Books

• *Climate Change: Observed Impacts on Planet Earth*. Elsevier.

Scientific Papers

The following may be of interest to you throughout this module:

Note: If you cannot gain access to some of these papers please talk to your facilitator or send a request to iscience@le.ac.uk; we may have them on file or be able to grant you access to them.

- Adams, J.M., et al (1990). *Increases in terrestrial carbon storage from the Last Glacial Maximum to the present*. Nature, **348**, pp 711-714.
- Allen P. A., & Hoffman P. F., (2005) *Extreme winds and waves in the aftermath of a Neoproterozoic glaciation*. Nature, **433**, pp 123-127.
- Alley, R.B. et al (2003) Abrupt Climate Change. Science, **299**, pp 2005-2010.
- Bard E., (2002) *Climate Shock: Abrupt Changes over Millennial Time Scale.* Physics Today, December.
- Berry, J.A. (1992) *Photosynthesis as a Process Shaping the Global Environment*. Photosynthesis Research, **34**, pp 82.

- Billups K., (2005) *Snow Maker for the Ice Ages*. Nature, **433**, pp 809.
- Blunier T., & Brook E. J., (2001) *Timing of Millennial-Scale Climate Change in Antarctica and Greenland During the last Glacial Period.* Science, **291**, pp 109-111.
- Brook E. J., (2005) *Tiny Bubbles Tell All.* Science, **310**, pp 1285–1286.
- Cohen A. S., et al, (2004) Osmium Isotope Weathering for the Regulation of Atmospheric CO₂ by Continental Weathering. Geology **32**, pp 157-160.
- Collatz, G.J., Ribascarbo, M. & Berry, J.A. (1992) Coupled Photosynthesis-Stomatal Conductance Model For Leaves of C4 Plants. Australian Journal of Plant Physiology, **19**, pp 519-538.
- Ehleringer J, Bjorkmann O (1977) *Quantum yields for CO₂ uptake in C3 and C4 plants.* Plant Physiol., **59**, pp 86-90.
- Farquhar, G.D., Caemmerer, S.V. & Berry, J.A. (1980) A biochemical model of photosynthetic CO₂ assimilation in leaves of C3 species. Planta, 149.
- Ganeshram R. S., (2002) Oceanic action at a distance. Nature, **419**, pp 123-125.
- Gribbin J., (1991) *Climate Now.* New Scientist, **44**, pp 1-4.
- Gribbin J., & Gribbin M (1996) *The Greenhouse Effect.* New Scientist, **92**, pp 1-4.
- Hanisch, C. (1998) *The Pros and Cons of Carbon Dioxide Dumping.* Environmental Science & Technology, **32**, 1.
- Haug G. H., et al (2005) *North Pacific seasonality and the Glaciations of North America 2.7 million years ago.* Nature, **433**, pp 821-825.
- Hepple, R.P & Benson, S.M. (2002) *Implications of surface seepage on the effectiveness of geologic storage of carbon dioxide as a climate change mitigation strategy* Earth Sciences Division, Lawrence Berkeley National Laboratory.
- Herzog, J.H. (2001) *What Future for Carbon Capture and Sequestration?* Environmental Science & Technology, **35**, 7, pp. 148–153.
- Holloway, S. (2001) *Storage of Fossil fuel-derived carbon dioxide beneath the surface of the earth.* Annu. Rev. Energy Environ. **26**, pp 145–66.
- Huxman, T. E. & R. K. Monson, (2003). Stomatal responses of C3, C3-C4 and C4 Flaveria species to light and intercellular CO₂ concentration: implications for the evolution of stomatal behaviour. Plant, Cell & Env., **26**.
- Hymus, G. J., (2002). Acclimation of photosynthesis and respiration to elevated atmospheric CO₂ in two scrub oaks. Global Change Biology, 8, pp 317-328
- Jackson I., & Stone T., (1999) *Snowball Earth.* New Scientist, pp 29-33
- Kerr R. A., (2004) Vicissitudes of Ancient Climate. Science, **303**, pp 307.
- Kovscek A. R. (2002) *Screening criteria for CO*₂ *storage in oil reservoirs.* Petroleum science and technology, **20**, Nos. 7 & 8, pp. 841–866
- Lambers, H., Chappin, F.S. & Pons, T.L. (1998) *Plant Physiological Ecology*, J. of Agronomy and Crop Science, **184**, pp 143-144.
- Maherali, H. et al., (2003). Stomatal sensitivity to vapour pressure difference over a subambient to elevated CO₂ gradient in a C3/C4 grassland. Plant, Cell & Env., 26, no. 8, pp 1297-1306.
- Medlyn, B.E., Loustau, D. & Delzon, S. (2002) Temperature response of parameters of a biochemically based model of photosynthesis. I. Seasonal

changes in mature maritime pine (Pinus pinaster Ait.) Plant, Cell and Environment, **25**, pp 1155-1165.

- Medlyn, B.E., et al (2002) *Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data.* Plant, Cell and Environment, **25**, pp 1167-1179
- Lyons T. W., (2004) *Warm Debate on Early Climate*. Nature, **429**, pp 359-360.
- Schrag, D. P., & Alley R. B., (2004) *Ancient Lessons for Our Future Climate*. Science, **306**, pp 821-822.
- Schwarzschild B., (2001) *Isotopic Analysis of Pristine Microshells Resolves a Troubling Paradox of Paleoclimatology.* Physics Today, **54**, pp 16-18.
- Shackleton N., (2001) *Climate Change Across the Hemispheres.* Science, **291**, pp 58-59.
- Siegenthaler U., et al (2005) *Stable Carbon Cycle-Climate Relationship During the Late Pleistocene*. Science, **310**, pp 1313-1317.
- Spahni R., *et al* (2005) *Atmospheric Methane and Nitrous Oxide of the Late Pleistocene from Antarctic Ice Cores.* Science, **310**, pp 1317-1321.
- Takahashi, T., et al (2002). *Global sea-air* CO₂ *flux based on climatological surface ocean pCO₂, and seasonal biological and temperature effects.* Deep-Sea Res. Pt. II **49**, pp 1601-1622.
- Thomas D. J., et al, (2002) *Warming the Fuel for the Fire: Evidence for the Thermal Dissociation of Methane Hydrate During the Paleocene-Eocene Thermal Maximum.* Geology, **30**, pp 1067-1070.
- Walker, G (2004) *Frozen Time*. Nature, **429**.
- Zachos J. C., et al, (2003) A Transient Rise in Tropical Sea Surface Temperature During the Paleocene-Eocene Thermal Maximum. Science, 302, pp 1551-1554.

A Guide to Module Pacing

Session	Preparation	Learning
FS01	Revise previous work on the environment from earlier modules.	Introduction to the Module and Problem Statement
ES01	Support for EdGCM software	
FS02	Allen P. A., & Hoffman P. F., (2005) Extreme winds and waves in the aftermath of a Neoproterozoic glaciation. Jackson I., & Stone T., (1999) Snowball Earth.	Snowball Earth
ES02	Support for EdGCM software	
ES03	Open discussion with Jan Cohen A. S., et al, (2004) Osmium Isotope	
FS03	 Weathering for the Regulation of Atmospheric CO2 by Continental Weathering. Kerr R. A., (2004) Vicissitudes of Ancient Climate. Lyons T. W., (2004) Warm Debate on Early Climate. Schrag D. P., & Alley R. B., (2004) Ancient Lessons for Our Future Climate. Schwarzschild B., (2001) Isotopic Analysis of Pristine Microshells Resolves a Troubling Paradox of Paleoclimatology. Thomas D. J., et al, (2002) Warming the Fuel for the Fire: Evidence for the Thermal Dissociation of Methane Hydrate During the Paleocene- Eocene Thermal Maximum. Zachos J. C., et al, (2003) A Transient Rise in Tropical Sea Surface Temperature During the Paleocene-Eocene Thermal Maximum. 	Severe Climate Disruptions: PETM and Toarcian Event
FS04	 Alley, R.B. et al (2003) Abrupt Climate Change. Bard E., (2002) Climate Shock: Abrupt Changes over Millennial Time Scale. Billups K., (2005) Snow Maker for the Ice Ages. Blunier T., & Brook E. J., (2001) Timing of Millennial-Scale Climate Change in Antarctica and Greenland During the last Glacial Period. Brook E. J., (2005) Tiny Bubbles Tell All. Haug G. H., et al (2005) North Pacific seasonality and the Glaciations of North America 2.7 million years ago. Ganeshram R. S., (2002) Oceanic action at a distance. Gribbin J., (1991) Climate Now. Gribbin J., & Gribbin M (1996) The Greenhouse Effect. Shackleton N., (2001) Climate Change Across the Hemispheres. Siegenthaler U., et al (2005) Stable Carbon 	Glaciation

r		
	Cycle-Climate Relationship During the Late	
	Pleistocene. Spahni R., et al (2005) Atmospheric Methane	
	and Nitrous Oxide of the Late Pleistocene from	
	Antarctic Ice Cores.	
	Walker, G (2004) Frozen Time.	
ES04	Open discussion with Jan	
	Gribbin J., (1991) Climate Now.	Global warming –
FS05	Gribbin J., & Gribbin M (1996) The Greenhouse	human effects
	Effect.	
FS06	Gribbin J., (1991) Climate Now.	Global warming –
F300	Gribbin J., & Gribbin M (1996) The Greenhouse Effect.	natural cycles
ES05	Open discussion with Joerg	
2000	You will be expected to discuss your own	
FS07	research.	Consolidate work on
		deliverables
FS08	You will be expected to discuss your own	Consolidate work on
	research.	deliverables
ES06	Open discussion with Jan	
	Revise previous work on photosynthesis from earlier modules.	
	Berry, J.A. (1992) Photosynthesis as a Process	
	Shaping the Global Environment.	
	Collatz, G.J., Ribascarbo, M. & Berry, J.A. (1992)	
	Coupled Photosynthesis-Stomatal Conductance	
	Model For Leaves of C4 Plants.	
	Ehleringer J, Bjorkmann O (1977) Quantum	
	yields for CO2 uptake in C3 and C4 plants.	
	Farquhar, G.D., Caemmerer, S.V. & Berry, J.A.	
	(1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.	
	Huxman, T. E. & R. K. Monson, (2003).	
	Stomatal responses of C3, C3-C4 and C4	
	Flaveria species to light and intercellular CO2	
	concentration: implications for the evolution of	Photosynthesis
FS09	stomatal behaviour.	C3 & C4 plants
	Hymus, G. J., (2002). Acclimation of	Cam adaptation
	photosynthesis and respiration to elevated atmospheric CO2 in two scrub oaks.	·
	Lambers, H., Chappin, F.S. & Pons, T.L. (1998)	
	Plant Physiological Ecology.	
	Maherali, H. et al., (2003). Stomatal sensitivity to	
	vapour pressure difference over a subambient to	
	elevated CO2 gradient in a C3/C4 grassland.	
	Medlyn, B.E., Loustau, D. & Delzon, S. (2002)	
	Temperature response of parameters of a biochemically based model of photosynthesis. I.	
	Seasonal changes in mature maritime pine	
	(Pinus pinaster Ait.)	
	Medlyn, B.E., et al (2002) Temperature response	
	of parameters of a biochemically based model of	
	photosynthesis. II. A review of experimental data.	

ES07	Open discussion with Joerg	
FS10	You will be expected to discuss your own research.	Box models Field trip preparation
ES08	Open discussion with Joerg	
Field Trip	Stratification	
FS11	You will be expected to discuss your own research.	Box models
ES09	Open discussion with Joerg	
FS12 ES10	Revise previous work on the carbon cycle from earlier modules. The following papers may be useful: Kovscek A. R. (2002) Screening criteria for CO2 storage in oil reservoirs. Hepple, R.P & Benson, S.M. (2002) Implications of surface seepage on the effectiveness of geologic storage of carbon dioxide as a climate change mitigation strategy. Herzog, J.H. (2001) What Future for Carbon Capture and Sequestration? Holloway, S. (2001) Storage of Fossil fuel- derived carbon dioxide beneath the surface of the earth. Hanisch, C. (1998) The Pros and Cons of Carbon Dioxide Dumping.	Carbon cycle Carbon sequestration
ES10	Open discussion with Jan	Continue to work ar
FS13	You will be expected to discuss your own research.	Continue to work on the deliverables
FS14	You will be expected to discuss your own research.	Continue to work on the deliverables

Facilitation Session 01

Pre Session Preparation

Revise previous work on the environment from earlier modules.

Introduction to Module

An introduction to the module as a whole with a brief overview of the various topics that will be covered over the following weeks. The Problem Statement and deliverables will be introduced and initial thoughts will be discussed as a class.

Group Discussion: Problem Statement

In your groups read through the problem statement and highlight the important terms/phrases. Locate useful triggers within the document that will help you to start planning your responses to the deliverables.

Pre Session Preparation

The following papers may be useful:

- Allen P. A., & Hoffman P. F., (2005) *Extreme winds and waves in the aftermath of a Neoproterozoic glaciation.* Nature, **433**, pp 123-127.
- Jackson I., & Stone T., (1999) *Snowball Earth.* New Scientist, pp 29-33

Group Discussion: Snowball Earth

Within your groups discuss the topic of Snowball Earth using the following questions as a starting point:

- What is it?
- What were the contributing factors/ what was it caused by?
- What happened during this event?
- What evidence do we have for it?
- Is it possible to simulate this event using the EdGCM software?

If you attempt to simulate this event using the EdGCM software consider the following:

- What happens when ice sheets are added/lost?
- What happens during tectonic uplift (i.e. more mountains are present)?

Throughout this discussion you should make sure you understand the concepts being discussed as well as considering how this topic ties into the module deliverables.

Pre Session Preparation

The following papers may be useful:

- Cohen A. S., et al, (2004) Osmium Isotope Weathering for the Regulation of Atmospheric CO₂ by Continental Weathering. Geology **32**, pp 157-160.
- Kerr R. A., (2004) Vicissitudes of Ancient Climate. Science, **303**, pp 307.
- Lyons T. W., (2004) Warm Debate on Early Climate. Nature, 429, pp 359-360.
- Schrag D. P., & Alley R. B., (2004) Ancient Lessons for Our Future Climate. Science, **306**, pp 821-822.
- Schwarzschild B., (2001) *Isotopic Analysis of Pristine Microshells Resolves a Troubling Paradox of Paleoclimatology.* Physics Today, **54**, pp 16-18.
- Thomas D. J., et al, (2002) *Warming the Fuel for the Fire: Evidence for the Thermal Dissociation of Methane Hydrate During the Paleocene-Eocene Thermal Maximum.* Geology, **30**, pp 1067-1070.
- Zachos J. C., et al, (2003) A Transient Rise in Tropical Sea Surface Temperature During the Paleocene-Eocene Thermal Maximum. Science, 302, pp 1551-1554.

Group Discussion: Severe Climate Disruptions

Within your groups discuss the topic of Severe Climate Disruptions paying particular attention to the "Paleocene-Eocene thermal maximum" and the "Toarcian Event". Summarise these events (and any other notable events) and assess the likely occurrence of a repeat event. Are there any parallels with the current output of fossil fuel emissions?

Throughout this discussion you should make sure you understand the concepts being discussed as well as considering how this topic ties into the module deliverables.

Pre Session Preparation

The following papers may be useful:

- Alley, R.B. *et al* (2003) *Abrupt Climate Change*. Science, **299**, pp 2005-2010.
- Bard E., (2002) *Climate Shock: Abrupt Changes over Millennial Time Scale.* Physics Today, December.
- Billups K., (2005) *Snow Maker for the Ice Ages*. Nature, **433**, pp 809.
- Blunier T., & Brook E. J., (2001) *Timing of Millennial-Scale Climate Change in Antarctica and Greenland During the last Glacial Period.* Science, **291**, pp 109-111.
- Brook E. J., (2005) *Tiny Bubbles Tell All.* Science, **310**, pp 1285–1286.
- Haug G. H., et al (2005) *North Pacific seasonality and the Glaciations of North America 2.7 million years ago.* Nature, **433**, pp 821-825.
- Ganeshram R. S., (2002) Oceanic action at a distance. Nature, **419**, pp 123-125.
- Gribbin J., (1991) *Climate Now.* New Scientist, 44, pp 1-4.
- Gribbin J., & Gribbin M (1996) The Greenhouse Effect. New Scientist, 92, pp 1-4.
- Shackleton N., (2001) Climate Change Across the Hemispheres. Science, 291, pp 58-59.
- Siegenthaler U., et al (2005) *Stable Carbon Cycle-Climate Relationship During the Late Pleistocene.* Science, **310**, pp 1313-1317.
- Spahni R., et al (2005) Atmospheric Methane and Nitrous Oxide of the Late Pleistocene from Antarctic Ice Cores. Science, **310**, pp 1317-1321.
- Walker, G (2004) *Frozen Time*. Nature, **429**.

Group Discussion: Glaciation

Within your groups discuss the topic of Glaciation and its cyclic nature. What processes are important for glaciation and which factors are the most important in the onset of such periods? Throughout this discussion you should make sure you understand the concepts being discussed as well as considering how this topic ties into the module deliverables.

Pre Session Preparation

The following papers may be useful:

- Gribbin J., (1991) *Climate Now*. New Scientist, **44**, pp 1-4.
- Gribbin J., & Gribbin M (1996) *The Greenhouse Effect*. New Scientist, **92**, pp 1-4.

Group Discussion: Global Warming – Human Effects

Within your groups discuss the topic of Global Warming paying special attention to the effect that humans are having on the environment; natural cycles of warming and cooling will be considered in the next session. This is a contentious issue and care must be taken to extract solid scientific theories from media distortion.

You may like to consider the following questions:

- What is the Greenhouse Effect and what likely changes will it bring about to the global climate?
- How could international treaties, such as the Kyoto Agreement and Montreal Protocol, affect his phenomenon?

Throughout this discussion you should make sure you understand the concepts being discussed as well as considering how this topic ties into the module deliverables.

Pre Session Preparation

The following papers may be useful:

- Gribbin J., (1991) *Climate Now.* New Scientist, **44**, pp 1-4.
- Gribbin J., & Gribbin M (1996) The Greenhouse Effect. New Scientist, 92, pp 1-4.

Group Discussion: Global Warming – Natural Cycles

Within your groups discuss the topic of Global Warming paying special attention to natural cycles of warming and cooling.

You may like to consider the following questions:

- What is the Quaternary climate and how has it changed over time?
- Are there any natural cycles that cause the global climate to change over time?

Throughout this discussion you should make sure you understand the concepts being discussed as well as considering how this topic ties into the module deliverables.

Pre Session Preparation

Continue with your own research.

Group Work: Deliverables

Within you groups work on your deliverables, consolidating all of the information you have researched so far. Ideally by this stage of the module you should have at least a draft outline for the whole series of vidcasts with a good overall idea of the theme and narrative pacing.

You should be starting to consider which of the vidcasts you wish to develop in more detail; by the next facilitation session you should have a more detailed plan (still in note form) for this session.

Pre Session Preparation

Continue with your own research.

Group Work: Deliverables

In this session you should continue working on your deliverables. It is advised that you work on the vidcast episode that you intend to produce by fleshing out the plan you produced in the previous facilitation session. What materials are you going to include? (Animations, narrative, images, simulations etc). What additional topics do you need to research?

Pre Session Preparation

Revise previous work on photosynthesis from earlier modules.

The following papers may be useful:

- Berry, J.A. (1992) *Photosynthesis as a Process Shaping the Global Environment*. Photosynthesis Research, **34**, pp 82.
- Collatz, G.J., Ribascarbo, M. & Berry, J.A. (1992) Coupled Photosynthesis-Stomatal Conductance Model For Leaves of C4 Plants. Australian Journal of Plant Physiology, **19**, pp 519-538.
- Ehleringer J, Bjorkmann O (1977) Quantum yields for CO₂ uptake in C3 and C4 plants. Plant Physiol., 59, pp 86-90.
- Farquhar, G.D., Caemmerer, S.V. & Berry, J.A. (1980) A biochemical model of photosynthetic CO₂ assimilation in leaves of C3 species. Planta, 149.
- Huxman, T. E. & R. K. Monson, (2003). Stomatal responses of C3, C3-C4 and C4 Flaveria species to light and intercellular CO₂ concentration: implications for the evolution of stomatal behaviour. Plant, Cell & Env., **26**.
- Hymus, G. J., (2002). Acclimation of photosynthesis and respiration to elevated atmospheric CO₂ in two scrub oaks. Global Change Biology, 8, pp 317-328
- Lambers, H., Chappin, F.S. & Pons, T.L. (1998) *Plant Physiological Ecology*, J. of Agronomy and Crop Science, **184**, pp 143-144.
- Maherali, H. et al., (2003). Stomatal sensitivity to vapour pressure difference over a subambient to elevated CO₂ gradient in a C3/C4 grassland. Plant, Cell & Env., **26**, no. 8, pp 1297-1306.
- Medlyn, B.E., Loustau, D.& Delzon, S. (2002) Temperature response of parameters of a biochemically based model of photosynthesis. I. Seasonal changes in mature maritime pine (Pinus pinaster Ait.) Plant, Cell and Environment, 25, pp 1155-1165.
- Medlyn, B.E., et al (2002) Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant, Cell and Environment, 25, pp 1167-1179

Group Discussion: Photosynthesis

Within your groups discuss the topic of Photosynthesis. You may like to consider the following questions:

- How does the rate of photosynthesis change with temperature?
- What other factors contribute to the rate of photosynthesis?
- What was the rate of photosynthesis in the last glacial maximum; what is it now?
- What are C₃ and C₄ plants?
- What is CAM and how does it relate to photosynthesis?

Throughout this discussion you should make sure you understand the concepts being discussed as well as considering how this topic ties into the module deliverables.

Pre Session Preparation

Continue with your own research.

Group Discussion: Modelling Climate Change

Climate change is modelled in a variety of ways; you have already encountered the EdGCM software. What other methods of modelling are available? Specifically what are Box Models and how are they used? What are the drawbacks of various different methods of climate modelling?

Throughout this discussion you should make sure you understand the concepts being discussed as well as considering how this topic ties into the module deliverables.

Group Discussion: Field Trip

Prepare for the field trip by researching the site you will be visiting and make sure that you are familiar with the Health and Safety aspects of University Fields trips; see your Laboratory Safety Handbook.

Pre Session Preparation

Continue with your own research.

Group Work: Box Models

Within your group use Box Models to explore climate change. These models should provide useful information for your deliverables.

Pre Session Preparation

Revise previous work on the carbon cycle from earlier modules.

The following papers may be useful:

- Kovscek A. R. (2002) Screening criteria for CO₂ storage in oil reservoirs.
 Petroleum science and technology, **20**, Nos. 7 & 8, pp. 841–866
- Hepple, R.P & Benson, S.M. (2002) Implications of surface seepage on the effectiveness of geologic storage of carbon dioxide as a climate change mitigation strategy Earth Sciences Division, Lawrence Berkeley National Laboratory.
- Herzog, J.H. (2001) What Future for Carbon Capture and Sequestration? Environmental Science & Technology, 35, 7, pp. 148–153.
- Holloway, S. (2001) *Storage of Fossil fuel-derived carbon dioxide beneath the surface of the earth.* Annu. Rev. Energy Environ. **26**, pp 145–66.
- Hanisch, C. (1998) The Pros and Cons of Carbon Dioxide Dumping. Environmental Science & Technology, 32, 1.

Class Discussion: Field Trip

As a class discuss the field trip. What did you learn? How can you usefully tie your experiences and results into your deliverables? Did the trip raise any interesting questions?

Group Discussion: Carbon Cycle and Sequestration

Within your groups discuss the topic of the carbon cycle and carbon sequestration. You may like to consider the following questions:

- What are the major natural carbon sources/sinks?
- What are the major man-made/influenced carbon sources?
- What is carbon sequestration?
- Can you find any modern case studies of carbon sequestration? Could similar projects be carried out in the UK?

Pre Session Preparation

Continue with your own research.

Group Work: Deliverables

In this session you should continue working on your deliverables.

Pre Session Preparation

Continue with your own research.

Group Work: Deliverables

In this session you should continue working on your deliverables.

Deliverables

Please name your deliverables in accordance with the standard naming convention (see the handbook for details). A sample filename is provided for you to cut and paste - please complete with submission date and username/group letter as appropriate.

All deliverables to be submitted to <u>iscience@le.ac.uk</u>

Please note that although deliverable deadlines (except for CLEs) are at the end of the module, you are strongly urged not to leave all work on the deliverables until the final weekend! In particular, if you would like formative feedback on your works-in-progress from your facilitator and/or experts, please provide them with draft copies in good time.

DELIVERABLES	TYPE	FILENAME	DUE	WEIGHTING
CLE01:	I	PA3019_I_CLE01_user	Week 2,	
		<i>name_date</i> .pdf	Day 1	
CLE02:	I	PA3019_I_CLE02_user	Week 3,	
		<i>name_date</i> .pdf	Day 1	30%
CLE03:	I	PA3019_I_CLE03_user	Week 4,	50 %
		<i>name_dat</i> e.pdf	Day 1	
CLE04:	I	PA3019_I_CLE04_user	Week 5,	
		<i>name_dat</i> e.pdf	Day 1	
D01: Vidcast	G	PA3019_G_D01_Serie	Week 5,	20%
Series Outline		sOutline_groupletter_d	Day 2	
		ate.pdf		
D02: Support	G	PA3019_G_	Week 5,	20%
Pack		D02_SupportPack_gro	Day 2	
		<i>upletter_date</i> .pdf		
D03: Vidcast	G	PA3019_G_	Week 5,	30%
Episode		D03_Vidcast_grouplett	Day 3	
		er_date		

Core Learning Exercise 01

Snowball Earth

1.	What is "Snowball Earth"?	[5]
2.	When did "Snowball Earth" occur?	[2]
3.	What caused "Snowball Earth"?	[5]
4.	What is the evidence for this climatic event?	[20]
5.	What is the evidence against "Snowball Earth"?	[20]
6.	What is the effect of mountains and ice on the climate?	[10]
Pal	eocene-Eocene thermal maximum	
7.	a) When did the Paleocene-Eocene thermal maximum event occur?b) What is the evidence for this event?c) What does the nature of this evidence suggest?	[1] [2] [2]
8.	What was the nature of the biotic response to the Paleocene-Eoc maximum?	ene thermal [5]
9.	How much did the surface sea and the deep-sea temperature rise by	?[2]
10.	What might have caused the isotope excursion?	[5]

	Core Learning Exercise 02	
1.	What is a methane hydrate?	[5]
2.	How are methane hydrates destabilised?	[5]
3.	What is the main source of evidence for the Quaternary Climate char how many years are recorded?	nge, and [5]
4.	Climate changes occurs in cycles; what are the cycles?	[15]

Core Learning Exercise 03

1.	What is the structural difference between C_3 and C_4 plants?	[5]
2.	Which type of plant would be more advantageous at high light intentemperature?	sity and high [5]
3.	Why are C_3 plants adapted to low temperature conditions?	[5]
4.	What are CAM plants and why are they so successful with extreme	e conditions?

[10]

Core Learning Exercise 04

1.	What is the evidence that links burning fossil fuels and climate change?	
	[10)]

2. What is a natural sink? Which natural sinks remove carbon? [5]

Deliverable 01: Vidcast Series Outline

Within your group produce an outline plan for a series of 5 vidcasts discussing the important issues covered within this module. The series should be suitable for hosting on a University UTunes channel, with episodes that should be between 5-10 minutes long.

The plan for each vidcast should be approximately one side of A4. You should include notes on the topics you would discuss, any animations/images you would use to illustrate your points and any significant conclusions or arguments you would put across. It must be more than a series of bullet points. You are not expected to produce a full script for each vidcast.

In addition you need to provide an outline plan of supporting materials that go with each vidcast in the series; the plan for each set of supporting materials should be approximately one side of A4.

Deliverable 02: Support Pack

For the vidcast you have chosen in Deliverable 02 produce the supporting material for it. These materials should cover ~5 sides of A4 and should be accessible to a range of age groups (GCSE students, A-Level students and undergraduates).

Deliverable 03: Vidcast Episode

Pick one of vidcasts in the series you have outlined and create it. The episode should be between 5-10 minutes long, depending on the number of animations you use.

The video may be created in any software you like; however, the AV suite and software will be made available for your use during this module. If you choose to use alternative equipment/software please submit the vidcast in a format that can be view on a standard Windows operating system (.mp4, .wmv, .flv etc).

Meta tags

Author: Kaduk, J.; Raine, D.; Zalasiewicz, J.

Owner: University of Leicester

Title: Interdisciplinary Science Earth Through Time Student Document

Classification: PA3019 / Earth Through Time

Keywords: Earth Sciences; Geology; Geography; Problem-Based Learning; Systems; sfsoer; ukoer

Description: The Earth Through Time module examines our planet in terms of its major systems; the atmosphere, hydrosphere, cryosphere, geosphere and the biosphere, all of which are constantly interacting. The module explores the topic of climate change throughout Earth's history; climate change is not just a contemporary phenomenon, it has happened in the geological past at times abruptly and catastrophically.

Creative Commons Licence: BY-NC-SA http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Language: English

File Size: 1.9MB

File Format: PDF

Version: 1.0

Additional Information

This module pack is the open student version of the teaching material. An expanded module pack for facilitators and additional information can be obtained by contacting the Centre for Interdisciplinary Science at the University of Leicester. http://www.le.ac.uk/iscience

This pack is the Version 1.0 release of the module.

