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Welcome 
 

Welcome to session 17. 

In this session we’ll look at transport properties in fluids. By transport properties we mean 

the flows that restore a system to equilibrium, so for example, the flow of heat to eliminate a 

temperature gradient.  

 

Session Author 
 

Prof. Derek Raine, University of Leicester. 

 

Session Editor – Tim Puchtler 
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Learning Objectives 
 

 Brownian motion  

 Mean free path  

 Random walk  

 Diffusion,  

 Fick’s law,  

 Fluctuations,  

 Viscosity  

 Einstein relation 
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The Problem 
 

The sequence shows the dispersal in water of an ink drop (arrowed)  

 

If we could follow the paths of the ink particles, which are readily displaced by impacts with 

the atoms of the water, we would see them disperse quickly through the surrounding 

medium. We call this diffusion. We’re all familiar with this diffusion of a coloured blob of 

ink through a glass of water. The process is irreversible – you can’t get the blob of ink back 

again from the uniform mixture that eventually forms.  

 

In the following images, we see a coloured blob being stirred and then reformed by 

reversing the motion. It’s not recovered exactly because the stirring motion isn’t exactly 

reversed, but it certainly doesn’t diffuse like the ink blot in water. Given long enough it 

might do so, but why is it so slow? 

 

To answer this question we need to understand how diffusion arises from the microscopic 

motion of atoms and molecules. This motion is apparent in a phenomenon known as 

Brownian motion which we’ll turn to next.   
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Brownian Motion 
 

If you observe a substance such as milk under a microscope, you can observe small globules 

of fat suspended in the liquid. These globules are very small, and as you observe them you 

can see them ‘jiggle’. 

This jiggling motion of the particles was first observed in a different context by the Scottish 

botanist Robert Brown and is known as ‘Brownian Motion’. Brown found the same effect in 

pollen grains suspended in water. His first thought was that it showed the pollen grains to 

be alive in some way. We now know this isn’t the case – the fat particles in milk aren’t alive 

– so the motion must reflect the buffeting being received from the environment. 

 

Can we explain Brownian motion in terms of the impact of 

atoms?  
 

What is the speed of a molecule of water? 

 

If a molecule of mass m has speed v its kinetic energy is 1/2 mv2. The mean energy of a 

molecule of a gas at a temperature T is 3/2 kT where k is Boltzmann’s constant. Equating 

these two expressions gives equation 1. 
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The typical speed of a gas molecule is therefore given by equation (2). 
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Let’s use this as a rough estimate of the speed of a water molecule, even though water is far 

from a perfect gas. If this collides with a pollen grain, what is the speed of the grain?  

A pollen particle is roughly 1 µm in diameter, roughly 10,000 times larger than a water 

molecule, so let’s take it to be at least 10,000 times more massive. By conservation of 

momentum this means that the speed of the pollen grain is around 0.2 metres a second. It’s 

probably quite difficult to measure the speed of the pollen grain. So let’s see how far it 

moves before another collision changes its direction. 

 

The number of collisions with water molecules per second is given by the number of water 

molecules moving towards the grain within a sphere of radius v, since these are the ones 

that can reach the grain in 1 second. The result is equation (3). 
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Looking at the factors in this expression we have: the fraction of 4 v2 into which the water 

molecule must be moving to hit the target, the number of water molecules per unit volume n 

times the volume. Of course, molecules nearer the grain will have a greater chance of 

striking it, so this is an underestimate.  

The result is about 1019 per second. So the grain moves 10-19 x 10-2 m between collisions – an 

amount that is quite imperceptible.   

 

Could we appeal to impacts not with the average water molecule, which individually have 

negligible effect, but to the fastest moving ones? For this we need to know how the speeds 

are distributed amongst the molecules – that is, how probable is it that a molecule will have 

a speed a specified amount greater than the norm. For a gas in thermal equilibrium at 

temperature T this is given by the Maxwell Boltzmann distribution. The graph shows this 

distribution of particle velocities for atoms of various masses. 
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Image1 

Because the Maxwell Boltzmann distribution is not symmetrical, the mean and the peak are 

not quite the same, but they are both of order of magnitude 3kT/m. You can see that once 

the speed is more than a few times the mean, the number of atoms with that speed becomes 

very small. For example at 10 times the mean the number is e-100 times smaller, which is 

around 10-50.  
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V0 = mean speed 

This leaves us with the alternative that it is not single impacts that are important in 

Brownian motion, but clusters of impacts. Let’s see how that works.     

  

                                                           
1 Adapted from Maxwell-Boltzmann molecular speed distribution for noble gases, Choihei, as posted 

on commons.wikimedia.org. Creative Commons Licensed. 

 

http://commons.wikimedia.org/w/index.php?title=User:Choihei&action=edit&redlink=1
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Random events 
 

Consider writing down a sequence of 0s and 1s randomly. How could we check if the 

sequence you write down is truly random?   

We can do this be checking on the distribution of sequences of the same digit. How often 

would you expect a run of k 1’s in a sequence of N digits? The answer is that on average k 

consecutive 1s should appear about (1/2)k+2N times. The N comes from the fact that we can 

start off the sequence in any of N positions. In each slot we have a probability of ½ that we 

will choose a 1 so you might expect a probability of (1/2)k that we choose k 1s. The actual 

probability is (1/2)k+2. Can you see where the extra two powers of ½ come from? Think about 

the digit before the sequence starts and the one after it ends.  

The example illustrates the fact that in a long series it’s not at all unusual to find long 

sequences of 1s or 0s.  

Does this now enable us to explain Brownian motion? Is it the occasional occurrence of large 

imbalances of impacts from different directions that displaces the pollen grain? If there are 

1019 impacts per second then what is the likely length of the largest run of hits from one 

direction in this time? We require that the probability of a run of k identical outcomes in 1019 

trials,  pk = (1/2)k+2N,  should be of order 1.  That is, 2k+2 = 1019. It will be sufficient to evaluate 

this only very approximately: 10 is roughly 23 so we need 2k+2 = 257  or k =55. This is still an 

insignificant excess as far as observing Brownian motion is concerned. What’s the problem?  

In fact, it’s not necessary that the imbalance should be created by successive impacts in the 

same direction: only that there should be a persistent imbalance over an observable time 

interval. To find out if this can be achieved we need to investigate the probability of getting 

imbalances of different sizes. This is the subject of the random walk, which we’ll turn to in 

the next section. 

 

Summary 
 

Brownian motion is the random motion of a macroscopic particle suspended in a fluid. 

It cannot be explained in terms of individual impacts of atoms of the fluid, but by excess 

impacts from one side in a random sequence. 
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SAQs 
 

1. (i) Suppose that a pollen grain is hit either from the left or the right. If we were to 

need an excess of 100 successive hits from one side in order for the effect to be 

observable, how long would it be before this happens? Which of the following is 

nearest? 

(a) 1013 years    (b)10-17 seconds (c) 2 seconds   

(ii) Why do we not need to wait this long for imbalances to be observed?  

(a) we see the pollen grain responding between individual impacts 

(b) the pollen grain responds to the overall imbalance, not just to strings of impacts 

from one side 

(c) the pollen grain has its own thermal motion 

 

2. Cross section for photon scattering off of a charged particle of mass m is 1/m4. Is it (a) 

more or (b) less likely that a photon will be impeded by an electron than by a proton? 

 

The answers appear on the following page 
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Answers 
 

1. (i)  

(a) Correct: Require N = 2k+2 = 2100 = 1030 . So we have to wait 1030/1019  seconds = 1021 s 

= 3 1013 years!!!!!  

(b) Incorrect: this is the time for 100 hits, which will be  a mixture of impacts from left 

and right, not the excess 

(c) Incorrect You may have argued from the calculation in the lecture that if the 

excess in 1 second is 55  then the excess in 2 seconds will be 110. This is quite wrong: 

large excesses are increasingly unlikely: we’ll see the probabilities in the next section.    

(ii) 

(a) Incorrect: the time between impacts is too short for this to be the case  

(b) Correct 

(c) Incorrect: thermal motions always arise from the interaction with the environment 

 

2. (a) Correct: the scattering cross section is larger for the electron than the proton 

because the electron has a smaller mass 

(b) Incorrect: the scattering cross section is inversely proportional to the mass of the target 

to the power 4 so the probability of scattering goes down as the mass of the target goes up. 
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Random Walks 
 

Galton’s Board 
 

We’ve seen that the pollen grain fluctuates in position and velocity – but the fluctuations to 

the left are balanced by those to the right. So you might think that the pollen grain on 

average remains where it started. If we are to explain diffusion we need to understand why 

this is not true.  

Let’s start with a simulation of Galton’s board.  

 

The blue circles represent fixed pins that the purple circles bounce off as they fall either to 

the left or the right with equal probability. At the bottom of the heap the balls are collected 

and counted. Where do you expect the majority of the balls to fall – in the centre or at the 

edge? Where do you expect the least number? Can you construct a verbal argument to 

explain your answer before going on?  

We expect the distribution to peak in the centre because there are less paths leading to the 

extreme positions. 

 

Below we show the calculation of the outcomes. 
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Let’s focus on the 2 in the line labelled n=2. This is the number of ways on which one can get 

from the top 1 as starting point to this point, namely the sequence of moves LR or RL.  The 

1’s at the edges arise because there is only one way to get to these points, namely the 

sequence of moves LLL and so on or RRR and so on.  

Rather than counting we can derive a formula:  to get to position k at the nth level we have 

to make k right moves out of n. The number of ways of doing this is the number of ways of 

choosing k objects from n without regard to order, which is nx(n-1)x… x (n-k+1) divided by 

k!.   

 

 

Interpretation as a random walk 

 

Instead of watching the balls fall down the pin board we can think of a body moving to the 

left or the right along a straight line at each step.  
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The body starts at the origin but as time goes on the probability of finding it a given distance 

from the origin increases. At each step there is a probability of 1/2 of moving to the left or 

right. The average displacement, counting left and right as opposite signs, is zero, but that’s 

because the digressions to the left are balanced over time by digressions to the right. As time 

goes on the probability grows of long sequences in which one direction dominates over the 

other.  

To see how far we expect the body to drift away from the origin as a function of time we 

need the mean square displacement or standard deviation. This can be derived from the 

probability distribution, but this involves some complicated maths so we’ll omit the 

derivation and go straight to the result.   

 

Probability distribution after N steps 
 

We now address the problem of how the excess impacts are distributed, that is, the 

probability of getting an excess of k impacts in one direction after N steps. This probability is 

the exponential of – k2/N. 

 
Nk

k eP /2

 

 

From the probability distribution we can find the mean distance from the origin. The figure 

shows us immediately that the mean is zero! The mean distance is therefore not a useful 

measure of how far a random walker strays from the origin. Instead we want a quantity that 

doesn’t average over positive and negative displacements. The simplest such quantity is the 

mean of the square of the displacement.  

We can see from the figure that the probability that the particle is k = N steps from the 

origin after N steps overall is e-1 or 1/e. This means that typically the probability of finding 

the particle much further away than this is declining rapidly, so we expect the mean 
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distance to the right or left to be about NL from the origin after N steps of length L. The 

mean square distance is therefore NL2 and the root mean square displacement is of order 

NL.  

22
NLxN  

This now gives us a complete account of Brownian motion:  it tells us where on average the 

pollen grain will be after N impacts, even though we do not see the effect of individual 

impacts. And it also tells us the distribution about this average.  

 

Summary 
 

 We can model Brownian motion as a random walk with equal probability of steps of 

equal length to the right or the left.  

 This enables us to calculate the probability of an excess of k steps in one direction 

after N steps in total; this probability is Gaussian. 

 This tells us the distribution of the Brownian particle with time. 
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SAQs 
 

1. A particle undergoes a random walk with step length L. After N steps it has travelled 

along a path of length  

(a) N1/2L     (b) NL      (c) NL1/2  

 

2. The distribution of distances from the origin in a random walk arises 

(a) because the particles have different step lengths 

(b) because particles on the edge make are more likely to collide with the larger 

number of particles at smaller distances and hence more likely to be pushed out.  

(c) all paths are equally likely so the end points with the most paths leading to them 

are more highly populated.  

 

3. An epidemic diffuses 3 miles in 1 week; how far in 4 weeks?  

(a) 12 miles  (b) 4.7 miles  (c) 8.2 miles (d) 6 miles 

 

The answers appear on the following page 
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Answers 
 

1. (a) Incorrect: this is the root mean square distance from the origin, not the length of 

the path 

(b) Correct: all particles travel the same distance of the number of steps times the step 

length. It is the fact that some of these steps are back towards the origin that leads to 

an average distance from the origin of N1/2L.  

(c) Incorrect: After N steps the length of path is NL 

 

2. (a) Incorrect: the distribution is related to the mean step length 

(b) Incorrect: the particle distribution, and hence the probability of collision, is 

symmetrical about the diffusing particle. 

(c) Correct 

 

3. (a) Incorrect. This would be the distance at constant speed, but diffusion spreads the 

epidemic at a rate proportional to the square root of time 

(b) Incorrect This answer arises if you add 3 to the original 3 miles; but the epidemic 

is not starting from a point at a distance of 3 miles and the diffusion rate is not unity.  

(c) Incorrect; It is not just the additional time over which the epidemic diffuses from a 

point 3 miles out, but over the whole time from a point at the origin.  

(d) Correct. Since it diffuses 3 miles in 1 week, D = 3 miles (week) 1/2  and so after 4 

weeks the distance is 3 x (4)1/2 = 6 miles.  
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Diffusion 
 

So now let’s apply what we’ve learnt to diffusion in a gas assuming that the gas atoms 

undergo random walks in their collisions with each other. We’ll assume that the step length 

of the random walk is a constant, the mean free path of the molecules. Although in practice 

there would be a distribution of path lengths between collisions this does not affect the 

conclusions.  

So, let’s look at a Brownian particle moving through the gas. It performs N steps between 

collisions in a time t each of length L. We saw that the mean square displacement from the 

origin is then as 22
NLxN .  

If we let the time between collisions be t then 

v

N
tNt  

We can then write equation (1) 

Dtxt 2
2

   (1) 

which defines the diffusion coefficient D, and D is given by equation (2) by direct 

comparison. 

v

v

t

L
D

2

1

2
2

22

 (2)  

 

What does this say about the flow of particles?  
 

We now know that the distance a diffusing particle moves in time t is proportional to t1/2. But 

we don’t yet know the rate at which particles diffuse.  

In this section we derive Fick’s law which answers this question. 

We imagine a gas of particles in random motion moving freely between collisions. The gas is 

in thermal equilibrium, so has the same temperature everywhere, but the density is not 

uniform. On average, particles in this gas move a distance  between collisions.  is called 

the mean free path. To begin the derivation we imagine a surface in the gas at some location 
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x. The density of gas particles here is n(x). Particles are crossing this surface from the left and 

right moving freely on average within a distance . So typically particles travel freely from 

/2 on the right to /2 on the left and vice-versa.  

 

The net flux is therefore as given in equation (1). The particles from the left provide a flux ½ 

n(x- /2) times the average velocity v per unit area per unit time; those from the right , ½ 

n(x+ /2)v. The factor of a half comes from the fact that ½ the particles are moving to the left 

and ½ to the right at each point. Notice that the distribution of speeds is the same 

everywhere because we are assuming that the gas is in thermal equilibrium at some fixed 

temperature. Expanding n(x  /2), assuming that  is small, gives equation (2), and hence 

(3). 

  

 

Notice the minus sign which tells us that particles diffuse down a gradient in density. The 

diffusion rate is proportional to the gradient in density. The diffusion constant v/2 is 

usually written as D.  
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Kinetic theory  
 

Kinetic theory relates the diffusion constant D or v to the properties of the gas. The mean 

free path can be written in terms of the collision cross section . Consider a cylinder of unit 

area. Each target in this cylinder has area . If the cylinder has length , then viewed end 

there must be enough of the areas  to fill the view, because we know that on average a 

particle entering the cylinder must make a collision within it.  

     

The total area of the n x  targets is n   and if this fills the view it must have unit area. 

Thus n   =1, which is equivalent to equation (1). 

 
n

1
   (1)  

We already know that the root mean square speed is:  

2/1
3

m

kT
v    (2) 

which gives us equation (3) for the diffusion constant: 

2/1
3

2

1

2 m

kT

n

v
D  (3) 
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Can you explain the diffusion constant is larger at 

higher temperatures? 

 

Summary 
 

 In a diffusion process the mean square displacement of a particle after a time t 

satisfies Dtxt 2
2

 where D is the diffusion constant. 

 The rate of diffusion is described by Fick’s law: 
dx

dn
DF  relating the flux of 

particles to the density gradient. 

 The mean free path is given by 
n

1
 where there are n targets per unit volume of 

cross-section  . 
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SAQs 
 

1. In outer space the particle density is 1 cm-3 and the temperature is 3K.   

(i) What is the mean free path in metres of a hydrogen atom, assuming that its 

cross section is the Bohr radius, 10-8 cm? 

(ii) What is time between collisions in years? Give your answers as the power of 

10 to the nearest integer. 

 

2. Dair  10000 Dwater and n(water) = 1000 n(air)  What does this tell us about the relative 

cross sections?  

(a) they are the same;  

(b) the collision cross section for water molecules is 10 times that for air molecules;  

(c) the collision cross section for air molecules is 10 times that of water 

 

3. The units of D are (a) m s-1 (b) m2 s-1 (c) m s-1/2  

 

The answers appear on the following page 
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Answers 
 

1. (i) 14 (i.e 1014 m)   

(ii) 3 (i.e. 1000 years)  

 

2. D    1/n  so n  (water) = 104 x n  (air)  and hence   (water) /  (air) = 104 n(air) / 

n(water) =10; (One molecule of water is about 0.1 to 0.2 nm) 

 

3. (a) Incorrect: D is not a velocity since it’s the ratio of <x2>  to t, not <x2>1/2 to t.  

(b)Correct: D is the ratio of <x2> to t so has the units of distance2 / time 

(c) Incorrect: this would be true if D were defined as the coefficient  relating the  root 

mean square displacement to (time)1/2, but it in fact related <x2> to t.  
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Fluctuations and dissipation 
 

Fluctuations and drag 
 

Einstein’s original 1905 paper describes the connection between the diffusion constant, 

which is related to the fluctuations in the displacement of a fluid particle, and the drag that 

the fluid exerts on a body moving through it. 

 

We can get some idea of why this connection comes about by considering again our 

Brownian particle, but this time not in terms of its changing position, but its changing 

velocity. Suppose that the particle suffers an excess of hits from the left; it will therefore be 

moving to the right. From the point of view of the particle, the medium will therefore appear 

to be moving towards it, so the particles of the medium now striking from the right will 

transfer a greater momentum than those from the left. The Brownian particle will therefore 

slow down – in other words the medium will appear to possess a viscosity.  

D = fluctuation in x2 is related to drag in medium: 

 

 

Viscosity 
 

Let’s see if we can make this argument quantitative.  We know that as a body moves 

through a viscous medium it eventually reaches a terminal speed. This occurs when the 

viscous force balances the applied force. For example a body falling through the air will 

reach a speed at which gravity balances the drag from air resistance.  

Viscous forces have a particular form: the force is proportional to the speed of the body with 

the coefficient of proportionality being the coefficient of viscosity, written here as ζ (zeta) in 

equation (1): 
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The terminal velocity of our Brownian particles is the average speed with which they move 

through the medium, namely / t. Immediately after a collision the Brownian particle is 

just as likely to be travelling in the direction of the applied force as against it. So on average, 

just after a collision the particle starts with zero speed. Between collisions the applied force 

accelerates a particle of mass m, according to Newtonian mechanics, with an acceleration 

f/m. Using the constant acceleration formula for distance and time we see that by the time of 

the next collision, t later, the distance covered  must be ½ f/m t 2.  

This gives us a second formula (2) for the velocity in terms of the force f, from which we can 

deduce a value for ζ in equation (3)  

 

Results so far 
 

We have a formula for the diffusion coefficient D, and for the viscosity coefficient.  

t
D

2

2

  
t

m2
 

We’re not yet home though because t and L are both microscopic properties that cannot be 

obtained from macroscopic measurements, that is measurements of the bulk properties 

rather that the atomic properties of the gas. So we need one more connection.  
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This is the relation between the speed of gas molecules and their temperature. For a perfect 

gas, that is one where the particles interact only when they collide and move freely in 

between collisions, we know that v2 = kT/m (remember this is a one dimensional random 

walk so there is no factor of 3!) 

m

kT
v

t

2

2

  (for a perfect gas) 

The product ζ D can now be expressed directly in terms of the temperature T. We end up 

with Einstein’s relation. This connects the fluctuations in position seen in Brownian motion 

and expressed here through the diffusion constant with the dissipative properties of 

viscosity (or friction). 

kT
t

mD

2

 (Einstein fluctuation-dissipation relation) 

This then answers the problem we posed at the start: large diffusion implies small viscosity 

and small diffusion implies large viscosity. The application to liquids which are not perfect 

gases is not exact, because we would have to take account of the stickiness of the molecules, 

but the same principle is followed. 

 

Now explain observations:  
 

We can now return to our original problem of the diffusion of ink in different fluids and 

explain what we saw.  

Ink diffuses freely through non-viscous liquid, but not through viscous one. 

The Einstein relation tells us that the rate of diffusion in a fluid, as given by D the diffusion 

coefficient, and its viscosity are inversely related: rapid diffusion corresponds to low 

viscosity and vice-versa. Treacle has a viscosity about 105 times higher than water, hence a 

rate of diffusion 100 000 times slower. We should guess therefore that the fluid in original 

images was something like treacle – in fact it was golden syrup.  
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Another example: frictional forces 
 

We end with another example of the Einstein relation connecting fluctuations and 

dissipation. It is very easy to get into a muddle thinking about frictional forces. The muddle 

usually arises from forgetting that friction is a dissipative process that arises from 

fluctuations, just like viscosity. We illustrate that here. 

 

Image2 

 

A boat is towed along a canal by a constant force just sufficient to resist the frictional drag of 

the water. Clearly energy is required to keep the boat moving at constant speed. Where does 

this energy come from? Clearly from the machine doing the towing. But how can the energy 

be transmitted down the rope if the force and hence the extension is constant? If nothing is 

changing in the rope, how can energy be flowing? The answer is that friction cannot be a 

constant force on a microscopic level, even if it appears constant averaged over macroscopic 

time intervals. The motion of the boat must be fluctuating, hence the extension of the rope is 

changing and elastic waves propagate down it carrying the energy to the boat.      

  

                                                           
2
 Where is the Horse?, by Dave Hamster, as posted on www.flickr.com. Creative Commons Licensed. 
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SAQs 
 

1. At constant density the rate of diffusion is expected to (a) increase (b) decrease with 

temperature? 

2. At constant temperature the diffusion rate in a perfect gas is expected to (a) increase 

(b) decrease with pressure? 

3. The viscosity of a fluid tends to (a) increase (b) decrease with temperature?  

 

 

The answers appear on the following page 
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Answers 
 

1. (a) Correct: Kinetic theory gives D proportional to T1/2/n; the increase in temperature 

implies that molecules move faster hence diffusion is more rapid.  

(b) Incorrect: Kinetic theory gives D proportional to T1/2/n so increases with 

temperature; the increase in temperature implies that molecules move faster hence 

diffusion is more rapid.  

 

2. (a) Incorrect: Since the density n is proportional to P/T, we have that  D is 

proportional to  T3/2/P. The mean free path is smaller at higher pressure.  

(b) Correct: Since the density n is proportional to P/T, we have that  D is proportional 

to  T3/2/P so the diffusion rate decreases as the pressure increases. The mean free path 

is smaller at higher pressure.  

 

3. (a) Incorrect: Viscosity is inversely related to diffusion: since D increases with 

increasing temperature the viscosity must go down.  

(b) Correct: Viscosity is inversely related to diffusion: since D increases with increasing 

temperature the viscosity must go down. 
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Additional Problems 
 

Problem 1: Photons from the Sun’s centre 

 

The Sun shines as a result of nuclear energy released in its centre and transported to the 

surface by radiation and convection. If the nuclear reactions were turned off, how long 

would it go on shining for?  

Our first guess might be the time it takes light to travel from the centre to the surface. This 

would be a solar radius, around 109m, divided by the speed of light, or about 3 seconds.  

How do we know this is wrong? Think for a moment before listening to the answer.  

If light were to travel directly from the centre to the surface, and then on to the Earth, we 

should be able to see into the centre of the Sun. Since we can’t we know that light from the 

centre must be scattered through the solar interior. In fact, it is also absorbed and re-emitted 

many times.  

To get an estimate of the time we can make some simple approximations. First of all we 

ignore absorption and re-emission of photons and suppose that they are just scattered. So a 

photon maintains its identity. The actual scattering takes place in three dimensions, but we’ll 

approximate the motion as a one dimensional random walk. We’ll also assume that the 

photons scatter off of free electrons only. To calculate the mean free path we need to know 

the number of such electrons per unit volume. We’ll assume that the Sun is made of 

hydrogen, that the hydrogen is fully ionised throughout the solar interior, and that the 

density is uniform. These assumptions sound fairly drastic, but they give some idea of the 

order of magnitude one might expect.  

Solar Radius       R = 7 x 108 m 

Solar Mass          M = 2 x 1030 kg 

Thomson Cross-section (for photons scattering off of free electrons) 

 = 6 x 10-29 m2 

Start by thinking about how you would calculate the mean free path, and then how you 

would use this to calculate the time taken to random walk the distance of the solar radius.  
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Answer: 

The mean free path of the photons can be found from equation (1), where n is the number 

density of electrons. From our assumptions the number of electrons is the same as the 

number of hydrogen atoms which is just the mass of the Sun divided by the mass of a 

hydrogen atom. To get the density we divide by the volume, giving us equation (2). 

 

Next we use what we have learnt about random walks, namely that after N steps a photon 

will have on average diffused a distance N1/2 times its mean free path. To escape from the 

centre a photon must diffuse a distance equal to the radius of the Sun; so equation (3) tells us 

how many steps of length   are required. We convert this into a time in equation (4) and 

then substitute for N and  from the earlier equations.  From the given data we get a time of 

about 3000 years. As a result of our rather simple assumptions this is in fact too small by 

several orders of magnitude.    
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Problem 2: Life in the Galaxy 

 

The centre of our Milky Way galaxy is a relatively crowded place and that makes it an 

unlikely place to search for signs of life. The density of stars in the central region is of the 

order of 3x104 per cubic light year and their speeds are around 200 km s-1.  So why are 

inhabited planets unlikely to be found at the centre of the Galaxy?  

 

The answer lies in the frequency of stellar collisions. In order for life to emerge we can 

assume that a planet must be subject to fairly stable conditions over an extended time 

period. At the very least, it needs to be in an orbit round a star. A collision between a 

planetary system and another star will disrupt the system and send the planets off into 

space. So the way to answer this question is to calculate the time interval between collisions 

in the Galactic Centre. This involves calculating the mean free path. To do this we need an 

appropriate cross-section. One might guess that this would be the area of a star, but stars do 

not actually have to collide to disrupt a planetary system. Let’s say it would be sufficient for 

stars to come within a distance of the orbit of Jupiter, which is 8 x 1011m.  See if you can 

calculate the time between collisions from this before reading any further.   

.  

Answer: 

The mean free path is 1/n , and so if the average speed of a star is v, the average time 

between collisions is 1/n v. Taking  = R2, where R is the radius of Jupiter’s orbit round the 

Sun and a light year as about 1016 m, we get  about 2 million years between collisions. Life on 

Earth arose within a period of 300 million years, which suggests that the process would be 

disrupted many times in the Galactic Centre. So this is an unlikely place to find life.  
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Overall Summary 
 

 Brownian motion is explained in terms of the multiple impacts of molecules on a 

macroscopic particle  

 A particle undergoing a random walk diffuses a distance proportional to the square 

root of time: 2/12/12 )2( Dtx  

 The probability of finding a particle k steps from the origin after N steps of a random 

walk is proportional to exp(-k2 / N) 

 Fick’s law relates the diffusive particle flux to the density gradient: 
dx

dn
F  

 Einstein’s fluctuation-dissipation relation connects diffusion and viscosity: kTD  
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