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LECTURE NOTES 1

Lecture Notes

S0 The Tools of the Trade

Motivation: This introductory section explores what Physics is and reviews the key
tools (mental, not metal) needed in the practice of Physics.

Objectives: By the end of this section you should

• understand the concepts of order of magnitude and significant figures;

• know the rules governing the use of units

• have consolidated and extended your knowledge of vectors

• have assimilated the strategies needed in tackling problems in physics

Key Mathematics: the use of vectors

S0.1 The trade: what is Physics?

[A] The aims of physics:

• to allow us to understand:

• the world of our senses ← I

• the world of the very small ← I

• the world of the very large ← I

← A• the Big Picture embracing all length scales

← I

← A
• to allow us to do:

• to go ← I

• to build ← I

• to heal ← I

[B] The elements of physics:

• making observations . . . which may be casual or systematic ← I

← I

• making models . . . mathematical caricatures
← I

• making sense . . . linking observations with models through mathematics, using pen
and paper or computer simulation ← I

← T

← T

← T
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Learning Resources

• Course Questions: Thinking exercises.

S0.2 Units

[A] Units and standards

• Physics restricts itself to what is measurable in principle.

• Measurement is comparison with established unit. ← EXAMPLES

• Units are interdependent. ← EXAMPLE

• Units are defined through practical standards.

• Interdependence of units limits number of necessary standards. ← EXAMPLE

• Accepted system of units and standards: Systeme Internationale

• Failure to abide by the rules can be very expensive1

• Precision of standards evolves with and for science. ← I

[B] Rules

KEY POINT 0.1
When two or more physical quantities are combined, the units combine in the same
way.

← EXAMPLE

KEY POINT 0.2
Two physical quantities that are equated, added or subtracted must have the same
units.

← EXAMPLE

← EXAMPLE

← T
Learning Resources

• Textbook: HRW Chapter 1

• Self-Test Questions: available on–line

1http://www.seds.org/˜spider/spider/Mars/ms98mco.html
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S0.3 Numbers

[A] Order of magnitude

• The order of magnitude of a physical quantity is an estimate to within a power of 10.

• It is useful in assessing whether an effect is important or measurable.

← EXAMPLE

← X

[B] Precision

• The precision claimed for the value of some quantity is expressed in the number of
digits (‘significant figures’, ‘sf’) used when it is quoted. ← EXAMPLE

• You must not write down ‘insignificant’ figures. ← EXAMPLE

• Experimental results are usually quoted with an error bound. ← EXAMPLE

← I

← T

Learning Resources

• Self-Test Questions: available on–line

• Course Questions: Making estimates.

S0.4 Vectors

[A] Definitions

A vector is a quantity which has both magnitude (positive) and direction.

A scalar is a quantity which has magnitude (positive or negative) only.

[B] Notation

Vector status is shown variously by arrows ( !A) or bold font (A).

The magnitude of the vector !A is denoted by | !A | or simply A . ← EXAMPLES

← I

[C] Utility

Vectors allow the laws of physics to be formulated concisely. ← I
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[D] The vector sum

• The sum of two vectors !A and !B is a vector !C = !A + !B

• The magnitude and direction of !C are defined geometrically by the ‘nose-to-tail’ con-
struction.

• Distinguish carefully between !A + !B and A + B. ← EXAMPLE

← M

[E] Components and unit vectors

• A vector can be represented by a set of components referred to a coordinate system.

• Consider a (two-dimensional: 2D) rectangular coordinate system, defined by two mu-
tually perpendicular (x, y) axes.

• Any vector !A can be written as !A = Axî + Ay ĵ

where

• Ax and Ay are the x and y

components of !A (the projections

of !A on the x and y axes)

• î and ĵ are unit vectors (vectors
of unit magnitude) along x and y
axes.

• Use of the component-representation allows vector addition ‘by algebra’.
← A

← EXAMPLE

[F] The dot product

KEY POINT 0.3
The dot product (or scalar product) of two vectors !A and !B:

• is written as !A · !B

• is a scalar

• is given by !A · !B = AB cos θ where θ is the angle between !A and !B.
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• Visualization

The dot product of two vectors reflects the size of the projection (‘shadow’) of one on
the other.

← EXAMPLE

• Dot products of unit vectors:

î · ĵ = 1 × 1 × cos(90) = 0

î · î = 1 × 1 × cos(0) = 1

• Hence the component representation (in 2D):

!A · !B = (Axî + Ay ĵ) · (Bxî + By ĵ) = AxBx + AyBy

[G] Cross product

KEY POINT 0.4
The cross product (or vector product) of !A with !B:

• is written as !A × !B

• is a vector

• has the magnitude AB sin θ where θ is the (smaller) angle between !A and !B

• has direction perpendicular to the plane of !A and !B in the sense in which a
corkscrew would move if turned so as to take !A into !B (the corkscrew rule).

← A
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• Visualization

The cross product of two vectors is (in magnitude) the area of the parallelogram with
sides formed from the two vectors.

← EXAMPLE

← MORE?

[H] One-dimensional vectors

KEY POINT 0.5
A one-dimensional (1D) vector is represented by a scalar whose sign (posi-
tive/negative) indicates the direction (right/left) along the 1D axis.

← EXAMPLE

← T

← T

← T

Learning Resources

• Textbook: HRW Chapter 3

• Self-Test Questions: available on–line

• Course Questions: Thinking about vectors, Adding vectors, Multiplying vec-
tors: the dot (or scalar) product, Unit vectors and dot products, Multiplying vec-
tors: the cross (or vector) product.

S0.5 Problem solving

In this course we will invite you to solve many physics problems. We do so for two
reasons. First, the experience will provide you with an opportunity to apply the prin-
ciples of physics, and so to understand more fully what they mean. Second, the expe-
rience will also help you learn more about the art of problem solving itself –the stuff
of active science.

Practising the art is the best way of learning it: but a frequent plea when confronted
with a problem is – we have heard it many times – ’I don’t know where to start’. This is
particularly relevant when the problems become more complex than those you might
have encountered thus far in your Physics.
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It’s a little like learning to drive a HGV (... I am assuming that none of you can...) When
first behind the wheel, it’s sort of similar to a car, but much different as well. More
levers, more gears, harder to go round corners..... What will help you gain confidence
(an important skill in Physics as well as HGV driving...!) is to have a strategy that will
help you get moving. With practice, you’ll be enacting the elements of the strategy
automatically. Unfamiliar roads will not faze you and your rig will rumble along
wherever you choose to take it.

This section presents a formal problem solving strategy that will allow you approach
solving a problem systematically. We’ll identify a number of general guidelines that
are helpful in keeping you on the right track. They are important for all the problem-
solving you will do in this course, and beyond. So they are set out fully. After we have
set them out and discussed them in general terms we shall illustrate them in action in
the context of a specific worked example.

[A] The strategy - F-D-P-E-E

The strategy comprises five distinct steps......

• Focus on the problem (understand the problem)

• Describe the physics (analyse the problem)

• Plan a solution (work out a strategy)

• Execute the plan

• Evaluate the result

Let’s look at each one in a bit more detail, along with some guidelines that give you a
bit more detail about what to actually ’do’

[B] Focus on the problem

GUIDELINE 0.1 Draw a sketch
We can often appreciate more clearly what is involved in a problem by reexpressing
it in pictorial form. Most problems in mechanics cry out for a picture, since they are
concerned with phenomena that we can easily imagine ‘seeing’. However even in the
most abstract realms, such as quantum physics, and relativity, physicists draw pictures
(symbolic, schematic) to act as problem-solving props.

← X
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GUIDELINE 0.2 Choose a sensible notation
In most problems you will find that you need to choose symbols to respresent the
important physical quantities. You will need to do this even if those quantities are
given specific numerical values in the question: you will see why in Guideline 0.3.
Symbols need to be explicitly defined, either by indicating their role in your sketch or
in words. Choosing symbols that are simple and evocative makes life easier. Thus ‘m’
and ‘M’ are wonderful as masses but would be lousy as lengths!

[C] Model the problem

GUIDELINE 0.3 Identify the principles
Most of the problems you will meet (in this course) involve the application of just one
or perhaps two basic principles. Your task is to identify which. Sometimes this will
be straightforward: perhaps the problem is ‘like’ one you have seen before; perhaps
there are key phrases that point you in the right direction. Sometimes you will find it
harder, as you come to deal with problems that are less idealised.

GUIDELINE 0.4 Formulate the equations
While we can go a long way with words and pictures, the full power of our physi-
cal principles is only released when we express them in the language of mathematics.
Solving problems usually means translating them into a mathematical form, and in-
voking the tools of mathematics to follow through the consequences.

[D] Plan your strategy

GUIDELINE 0.5 Devise a strategy
Once you’ve written down the basic equations expressing what you know, you need
to take time to plan how you will manipulate them to find what you actually want to
know. Time spent on this kind of route-planning may spare you the pain of finding
yourself on unmade roads, at dead ends or the wrong destination. Do you have all the
information that you need to be able to solve the problem?

GUIDELINE 0.6 Do not substitute numbers until you must
Knowing the units of the terms in an equation provides an important check on whether
the equation can be right: you lose this check as soon as you substitute numbers. You
also lose the information about special cases: see Guideline 0.10

← A TIP!
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[E] Execute the strategy

GUIDELINE 0.6 Use quantities in consistent units
In numberical problems, make sure than any quantities you are combining have the
same units. As an example, in a kinematics problem, using a speed of miles per hour to
calculate the time taken for some event will yield an answer in hours! Maybe seconds
would be a better choice. In some problems, there will be no numbers specified - in
this case, solve the algebra, don’t ’invent’ numbers for quantities.

[F] Evaluate the answer or result

GUIDELINE 0.8 Ask if the answer makes sense
This is perhaps the single most important rule of the lot! It means different things
in different circumstances. Sometimes it means asking whether a numerical result is
physically reasonable. It usually involves other more specific tests, which we will deal
with separately. . .

GUIDELINE 0.9 Check the units
Our second rule governing the use of units (KP 0.2) provides an invaluable check
which you can put into practice throughout any bit of algebraic manipulation —and
always at the end. Remember that a valid equation must pass this test: if it fails, there
is something wrong and it is not sensible to go further until you have sorted it.

GUIDELINE 0.10 Appeal to special cases
Quite frequently you will find that you know some other condition that your answer
has to satisfy, when you think of some special case (or limit, or range) of the physi-
cal parameters. . . another reason for carrying through the argument in terms of the
symbols, instead of the specific values they may have in the particular instance. While
satisfying this special case condition doesn’t guarantee that you’re correct, it makes it
that much more likely.

GUIDELINE 0.11 Be prepared to look from a different angle.
There are some problems which are tough –perhaps even impossible– to do if you
broach them in what appears to be the ‘obvious’ way; but which become quite simple
when you find a different way of looking at them. The most challenging and satisfying
problems often need this kind of flexibility of thought.

You’ll get plenty of practice enacting this strategy in the weekly workshops. For now,
here’s a worked example to get started..... ← EXAMPLE

← I
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Learning Resources

• Textbook: HRW provides a series of ‘Problem solving tactics’, spread through
the text.

In addition to this, we’ll be providing some dissections of (real) good and bad
answers in video format online. (These will be linked from the homepage when
available).

• Self-Test Questions: available on–line

• Course Questions: Asking yourself if it makes sense.

S1 Space and Time

Motivation: Physics deals with the sequence of events that make up the unfolding
story of the universe. The most basic questions we can ask about ‘events’ are ‘where?’
and ‘when’. Thus Space and Time are the key concepts of physics. In this section we
explore the classical view of Space and Time developed by Galileo and Newton, and
touch on its failures, unearthed by Einstein.

Objectives: By the end of this section you should

• be familiar with the key concepts of kinematics, and their geometrical signifi-
cance

• be competent in the use of vectors in describing 1D and 2D motion

• know and be able to apply the equations describing motion at constant accelera-
tion and motion in a circle at constant speed

• know the Galilean description of relative motion and be aware of its limitations

Key Mathematics: derivatives and slopes; integrals and areas

S1.1 One dimensional particle kinematics

[A] Context

• We focus on the kinematics of a particle moving in one dimension (‘1D’, or ‘d=1’). ← COMMENTARY

• Fundamental concern: variation of position (x) with time (t) ← COMMENTARY

← I
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[B] Displacement

Consider a particle whose x coordinate
varies smoothly but arbitrarily with t.

• Suppose particle moves from position x1 at time t1 to x2 at t2.

• We define the time interval

∆t = t2 − t1 (1.1)

• We define the associated displacement by

∆x = x2 − x1 (1.2)
← COMMENTARY

← EXAMPLE

[C] Velocity

From the variation of x with t we de-
fine the average velocity over a time
interval as

vav =
∆x

∆t
(1.3)

KEY POINT 1.1
The instantaneous velocity is defined as the average velocity over the next infinitesi-
mally small time interval:

v = lim
∆t→0

∆x

∆t
=

dx

dt

Geometrical significance: v is gradient of x-t graph.
← COMMENTARY
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[D] Acceleration

Now consider the variation of v with t.
The average acceleration over a time
interval is defined as

aav =
∆v

∆t
(1.4)

KEY POINT 1.2
The instantaneous acceleration is the average acceleration over the next infinitesimally
small time interval:

a = lim
∆t→0

∆v

∆t
=

dv

dt

Geometrical significance: a is gradient of v-t graph.
← COMMENTARY

← EXAMPLE

[E] Integral forms of key equations

KEY POINT 1.3
The integral forms of the x − t and v − t relationships are:

∆x =

∫ t2

t1

vdt and ∆v =

∫ t2

t1

adt

In particular the displacement is the area under the v − t curve.
← ANALYSIS
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[F] Constant acceleration equations

KEY POINT 1.4
For 1D motion at constant acceleration a, the position and velocity (x and v) at the end
of a time interval (t) are related to those at the beginning of the interval (x0 and v0) by

v = v0 + at (a)

x − x0 = v0t +
1

2
at2 (b)

v2 = v2
0 + 2a(x − x0) (c)

← ANALYSIS

← M

Visualization

← T

← T

Learning Resources

• Textbook: HRW Chapter 2

• Self-Test Questions: available on–line

• Course Questions: The meaning of derivatives and integrals, Vertical motion
under gravity.

S1.2 Kinematics in two (or three) dimensions

[A] Position and displacement vectors

• In space dimension d = 2 (or 3...) the position of a particle is specified by:

• d coordinates (x, y . . . )
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or

• a d-dimensional vector !r

Visualization

The position vector can be written as

!r = x̂i + yĵ

The displacement vector is

∆!r = ∆x î + ∆y ĵ

•

[B] The velocity vector

KEY POINT 1.5
The velocity is the time rate of change of the position vector; it is a vector:

!v =
d!r

dt
In component form: vx =

dx

dt
vy =

dy

dt

← COMMENTARY
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• Visualization

!v = lim
∆t→0

∆!r

∆t

• As ∆t → 0, ∆r → 0

• ∆!r becomes tangent

• And so . . .

KEY POINT 1.6
The velocity vector is always tangential to the particle path.

← A

[C] The acceleration vector

KEY POINT 1.7
The acceleration is the time rate of change of the velocity; it is a vector:

!a =
d!v

dt
In component form: ax =

dvx

dt
ay =

dvy

dt

• The acceleration is non-zero if

• the velocity vector is changing in direction

• the velocity vector is changing in magnitude

[D] Constant acceleration equations

• If the acceleration vector is constant, the 1D kinematic equations (KP 1.4) can be ap-
plied to the motion associated with each of the axes. ← EXAMPLE
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• Visualization

← T

← T

Learning Resources

• Textbook: HRW Chapter 4.1-4

• Self-Test Questions: available on–line

S1.3 Application: projectile motion

[A] The problem

Consider motion of projectile near the earth’s surface.

• Choose coordinate axes:

x - horizontal

y - vertical

← D

• Specify initial conditions:

• launch at t = 0 from x = 0, y = 0

• launch velocity: !v0
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• components:

vx0 = v0 cos θ and vy0 = v0 sin θ (1.5)

← M

• Identify assumptions:

• in words: acceleration is down, magnitude g

• in equations: ax = 0 ay = −g

[B] Results

x-motion: vx = vx0 and x = vx0t (1.6)

y-motion: vy = vy0 − gt and y = vy0t −
1

2
gt2 (1.7)

time of flight: tf =
2v0 sin θ

g
(1.8)

range: R =
2v2

0 sin θ cos θ

g
(1.9)

trajectory equation: y = x tan θ −
gx2

2v2
0 cos2 θ

(1.10)

← ANALYSIS

Visualization:

x

y

y=x tan 
y

R/2

max

R
← T

← M
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Learning Resources

• Textbook: HRW Chapter 4.5-6

• Self-Test Questions: available on–line

• Course Questions: The trajectory equation, Projectile motion, Steep and shallow
trajectories.

S1.4 Application: circular motion

[A] Uniform circular motion

KEY POINT 1.8
A particle moving in a circle of radius r at uniform speed v has an acceleration of
magnitude v2/r, directed towards the centre of the circle (centripetal).

← COMMENTARY

← ANALYSIS

[B] Generalisations

• If the path is not circular: the result holds at each point on the path, with r the radius
of curvature at that point. ← COMMENTARY

• If the speed is not constant: there is also a component of acceleration of magnitude dv
dt

tangential to the path.
← COMMENTARY

← T

← A
Learning Resources

• Textbook: HRW Chapter 4.7

• Self-Test Questions: available on–line

• Course Questions: A consolidation exercise, Centripetal acceleration, Average
acceleration, Trajectory curvature, Centripetal and tangential acceleration.

S1.5 Relativity: the common sense view

[A] Context

• The description given to the motion of any object depends upon the perspective of the
observer. ← EXAMPLE

• A reference frame is the name given to the coordinate system to which an observer
(or group of observers) refers measurements. ← EXAMPLES

← I
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• Relativity is concerned with the relationship between measurements referred to dif-
ferent reference frames.

[B] Results: Galilean transformations

KEY POINT 1.9
The relationships between the positions, velocities and accelerations of a particle, P,
assigned in two reference frames, A and B, in uniform relative motion are

!rPA = !rPB + !rBA

!vPA = !vPB + !vBA

!aPA = !aPB

These are the Galilean transforma-
tions.
They are based on the assumption that
time is simple.

← Q

← ANALYSIS

← COMMENTARY

← EXAMPLE

[C] Status of results

These results are

• consistent with common sense

• practically correct for ‘slow’ kinematics

• wrong for ‘fast’ kinematics, where ‘fast’ signifies involvement of speeds comparable
with speed of light, c.

← T

Learning Resources

• Textbook: HRW Chapter 4.8-9

• Self-Test Questions: available on–line

• Course Questions: Relative velocities 1, Relative velocities 2, Choosing a speed
limit.
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S1.6 Relativity: Einstein‘s view

This section is included for general interest. It is not part of the examinable programme
of the course.

Learning Resources

• Textbook: HRW Chapter 37 takes you through the first steps in Special Relativity.

S2 Force Mass and Motion

Motivation: Understanding a changing world means understanding motion. This
section is concerned with the key concepts (mass, force) underlying the classical New-
tonian theory of motion, and expressed in Newton’s three laws. We illustrate the ap-
plication of these laws in the context of a wide range of forces, and touch on some of
the curious ‘forces’ encountered in ‘accelerating’ reference frames.

Objectives: By the end of this section you should

• understand the roles played by force, mass and inertial reference frames in the
laws of motion

• be familiar with a wide variety of the forces encountered in nature

• be able to apply Newton’s laws to analyse the behaviour of systems experiencing
such forces

• understand, qualitatively, the fictitious forces experienced in non-inertial refer-
ence frames

Key Mathematics: vectors; a glimpse of differential equations

S2.1 Inertial reference frames: Newton‘s 1st Law
← PREAMBLE

KEY POINT 2.1
Newton’s 1st Law. A body free of external ‘influences’ will have constant velocity
(zero acceleration) with respect to any inertial reference frame.

• This statement defines the term inertial reference frame

– an inertial reference frame is one in which the 1st Law holds!

• A remote star is an ideal inertial frame

– because it is itself ‘free of external influences’. ← Q
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• Any reference frame moving at constant velocity w.r.t. an inertial frame is also inertial
– the Galilean transformations (KP 1.9) guarantee this. ← HELP?

• The earth is approximately an inertial frame. ← COMMENTARY

← I

← T

Learning Resources

• Textbook: HRW Chapter 5.1-3

S2.2 Force and mass: Newton‘s 2nd and 3rd laws

[A] Preamble

• We introduce the concept of force to quantify external influence on acceleration.

• We introduce the concept of mass to quantify inertia (resistance to acceleration).

• 2nd and 3rd laws together:

• allow us to define force and mass

• provide framework for explaining motion under given forces.

[B] The 2nd and 3rd laws

KEY POINT 2.2
Newton’s 2nd Law: The acceleration !a a body displays (with respect to an inertial
reference frame) is related to the net external force !F it experiences by

!F = m!a

where m is its (inertial) mass. This is a vector equation.

KEY POINT 2.3
Newton’s 3rd Law: The force !F12 exerted on body 1 by body 2 is equal in magnitude
but opposite in direction to the force !F21 exerted on body 2 by body 1:

!F12 = −!F21

The two forces constitute an ‘action-reaction pair’. They act on different bodies.
← COMMENTARY

← THE SCALE OF FORCES
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Learning Resources

• Textbook: HRW Chapter 5.4-6, 5.8

• Self-Test Questions: available on–line

S2.3 How to use Newton‘s Laws

This section gathers together some hints you will find useful when applying Newton’s
Laws. They complement the general problem-solving guidelines set out in S0.5 . They
are best learned by working through the examples which follow.

• Choose your system: Newton’s 2nd Law can be applied to any ‘bit’ of the universe.
You must choose the ‘bit’: this is your system. It may be all or only part of the physical
system described in the problem. It is a good idea to draw a box around it to remind
you what you have chosen.

• Identify all the forces: exerted on the chosen system by anything else. Other forces
are irrelevant to the behaviour of the system you have chosen. ← A TIP?

• Draw a vector diagram: showing all the forces you have identified; each force should
be represented by a vector with its origin on the system. This is called a free-body
diagram.

• Apply the 2nd Law to your chosen system: to establish the relationship between the
net force it experiences and its acceleration. Then:

• If the acceleration is given, the task is to infer something about the forces.

• If the forces are given the task is to find and solve the equation for the accelera-
tion. This is the equation of motion. Its solution describes the way the position
coordinates of the system change with time.

• Remember that forces are vectors: . . . and have to be combined accordingly. In doing
so you can make life easier for yourself by choosing your coordinate axes wisely. ← I

• Remember that the 3rd law is different: in that it always involves two systems. One
of the forces in the third law pair acts on one system; the other force acts on the other
system. ← A TIP?

← T
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Learning Resources

• Textbook: HRW sets out its own set of Problem Solving Tactics, in relation to
Newton’s Laws, in Chapter 5.9

• Course Questions: Forces are vectors, Forces and accelerations, Choosing the
right system, Misapplying the Third Law, Actions and reactions.

S2.4 Classification of forces

• To make use of Newton’s 2nd law, the equation

m!a = !F

specifying the acceleration, needs to be augmented by an equation

!F = . . .

specifying the force.

• Nature’s forces fall into three categories: fundamental, phenomenological and ficti-
tious.

[A] Fundamental forces

• These are forces of interaction between elementary constituents of the universe:

• gravitational force, between point masses

• electrostatic force, between point charges

• some others ← X

• They are fully specified by some quantitatively explicit force law.

• Forward reference: S2.11 and S2.12
← EXAMPLE

[B] Phenomenological forces

• These are forces of interaction between macroscopic portions of matter.

• They represent the aggregate effects of fundamental forces.

• They can generally be described only by equations containing empirically-determined
constants.

• Forward reference: S2.8
← EXAMPLES
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[C] Fictitious forces

• These are forces we invent to make sense of our experience in non-inertial reference
frames.

• Forward reference: S2.13

Learning Resources

• Textbook: HRW Chapter 5.7, 6.5

S2.5 Gravitational force near the earth‘s surface

[A] About the force

The gravitational force on a body of mass m within a small enough region near the
earth’s surface is:

!FG = −mgŷ

where

• ŷ is a unit vector in the direction
of the ‘local’ vertical

• g is local gravitational accelera-
tion

[B] Example problem

Determine the motion of a body of mass m experiencing only a uniform gravitational
force, and consider the implications of the 3rd law.

Solution

• Application of 2nd law
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Choose the system to be the body only

• the second law:

m!a = !FG

• the force law:

!FG = −mgŷ

• the equation of motion:

!a = −gŷ

• The solution: already established in KP 1.4.

• Application of 3rd law

• choose the two systems: body, B and
earth, E

• the third law:

!FBE = −!FEB = −mgŷ

← A

[C] Inertial and gravitational mass

• In Newton’s 2nd Law
!F = m!a

m is strictly the inertial mass.

• In the gravitational force equation

!FG = −mgŷ

m is strictly the gravitational mass.
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• The claim that these masses are the same leads to the prediction that all bodies have
the same free fall acceleration. ← X

• This claim is one expression of the Principle of Equivalence

• Forward reference: S2.13

S2.6 Normal contact force

[A] About the force

The normal contact force FN is the repulsive force of interaction between two surfaces
in contact, acting at right angles to the surfaces, and inhibiting closer contact.

• otherwise known as: ‘normal
force’, or ‘normal reaction’

• each body experience force of
same magnitude but opposite di-
rection.

[B] Example problem

Two bodies are free to move on a
smooth horizontal surface under the
action of a horizontal force of magni-
tude FA.

Determine the acceleration and the normal contact force between them. ← SOLUTION

Results

acceleration:

a =
FA

m1 + m2

magnitude of normal force

FN = FA
m2

m1 + m2
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Check It!

• Are the units OK?

• Does it make sense?

← T

← T

← T

← M

Learning Resources

• Textbook: HRW Chapter 5.7,5.9

• Self-Test Questions: available on–line

• Course Questions: Normal contact force.

S2.7 Tension

[A] About the force

• A stretched string (or wire, rod . . . ) is said to be under tension.

• The force such a string exerts on an object to which it is attached has magnitude T , the
tension, and acts along the string, away from the object.

• If the string is light enough the tension is uniform (the same at both ends).

← COMMENTARY

[B] Example problem

Two masses m1 and m2 are suspended over a light
and frictionless pulley. Find the accelerations of the
masses and the string tension.

1
m2

m

← SOLUTION
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Results

string tension:

T =
2m1m2

m1 + m2

g

downward acceleration of m1 (and upward acceleration of m2):

a =
m1 − m2

m1 + m2

g

Check It!

• Are the units OK?

• Does it make sense?

← T

Learning Resources

• Textbook: HRW Chapter 5.7,5.9

• Self-Test Questions: available on–line

• Course Questions: Tension and normal forces, Tensions.

S2.8 Frictional force

[A] About the force

• The friction force FF is the interaction force between two surfaces in contact, acting
parallel to the surfaces, inhibiting sliding. ← I

• The value of FF depends both on the applied force parallel to the surface, FA and the
normal contact force between the surfaces, FN :

• no sliding:

FF = FA

• on the point of sliding:

FF = µsFN = FA

• while sliding:

FF = µkFN < FA
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• The quantities µs and µk are the coefficients of static and kinetic friction.

• They depend on the surfaces in contact; µk is smaller than µs.

← COMMENTARY

[B] Example problem

A block of mass m = 2 kg rests on a plane inclined
at an angle θ = 45◦ to the horizontal. A force !FA of
magnitude 30 N is applied to it, horizontally. The
block moves up the plane with constant velocity.

A
F

θ

Write down equations for (a) the normal contact force between box and plane and (b)
the net force acting up the plane. Deduce the value of the coefficient of kinetic friction. ← SOLUTION

Results

µk =
FF

FN
=

FA cos θ − mg sin θ

FA sin θ + mg cos θ
=

30 − 20

30 + 20
= 0.2

Check It!

• Are the units OK?

• Does it make sense?

← T

← M

Learning Resources

• Textbook: HRW Chapter 6.2-6.3

• Self-Test Questions: available on–line

• Course Questions: Frictional forces.

S2.9 Linear restoring force

• A stretched or compressed spring exerts a force on a body to which it is attached.
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• The magnitude of the force is proportional to the distortion of the spring x provided x
is small (Hooke’s Law).

• The force exerted by the spring
on the object is

F = −kx

– sign means force acts oppo-
site to displacement: it is
restoring

– force depends on the first
power of x: it is linear

• Equation of motion of such a body is

max = m
d2x

dt2
= −kx

• This is the generic equation of simple harmonic motion (SHM).

• Forward reference: S6 .

Learning Resources

• Self-Test Questions: available on–line

S2.10 The centripetal force

[A] About the force

• A body of mass m moving at uniform speed v in a circle of radius r exhibits an accel-
eration of magnitude v2/r towards the centre (KP 1.8).

• By Newton’s 2nd law this acceleration must be attributed to a force FC where:

• the magnitude of FC is FC = mv2/r
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• the direction is towards the centre

• The generic name for this force is centripetal.

← EXAMPLES

[B] Example problem:

See S2.11 ← T

← M

Learning Resources

• Textbook: HRW Chapter 6.5

• Self-Test Questions: available on–line

• Course Questions: Banking on friction.

S2.11 The gravitational force
← PREAMBLE

[A] About the force

KEY POINT 2.4
The gravitational force of interaction between two point masses m1 and m2 separated
by distance r:

• has magnitude

FG =
Gm1m2

r2

with G the universal constant of
gravitation.

• is attractive

← I

[B] Example problem

A planet of mass m moves in a circular orbit of radius r about the sun, of mass M .
Establish the relationship between the period of the orbit and its radius. Treat the sun
and planet as point masses. ← I

← SOLUTION

Results

In words: the square of the period is proportional to the cube of the orbit radius.

This is Kepler’s Law of Periods. ← I
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Explicitly:

T 2 =
4π2

GM
r3

← COMMENTARY

Learning Resources

• Textbook: HRW Chapters 13.2 and 13.7 deal with Kepler’s Laws, including the
Law of Periods. They rest on concepts, notably angular momentum conserva-
tion, to be discussed in S5 .

• Self-Test Questions: available on–line

• Course Questions: G and g, Geostationary orbits.

S2.12 Electrostatic forces
← PREAMBLE

[A] About the force

KEY POINT 2.5
The electrostatic (Coulomb) force of interaction between two point charges q1 and q2

separated by distance r:

• has magnitude

FE =
K | q1q2 |

r2

q1q
F F

E E
2

unlike charges

E

like charges
F F

E
with K a fundamental constant of electrostatics

• is attractive if q1, q2 are unlike

• is repulsive if q1, q2 are like

← COMMENTARY

[B] Example problem

Estimate the ratio of the gravitational force between two electrons and the electrostatic
(Coulomb) force between two electrons. ← SOLUTION

[C] Dealing with multiple charges - the principle of superposition

In the same way that we have been adding forces as vectors throughout this section,
electrostatic forces are no exception and serve as an illustration of the Principle of
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Superposition in action.

Let’s start with the vector form of the force due on one charge from another. If we have
two point charges q1 and q2 seperated by a vector !r1 2 = r r̂1 2 as shown below

3.1

then the force on q1 as aresult of q2 is a vector giving,

KEY POINT 2.6
Coulomb’s Law in vector form, being:

!F1 2 = −
1

4π ε0

q1 q2

r2
r̂1 2

where r̂1 2 is a unit vector from q1 in the direction of q2.

Note that this force is directed away from q1 if both charges have the same sign and
towards q2 if opposite. Generalising to a series of charges, for example q1 → q6

Then the force on q1 as a result of the charges q2 → q6 will be a vector sum, being

KEY POINT 2.7

!F1 = !F1 2 + !F1 3 + · · · =
N

∑

j=2

!F1 j

where each force !F1 j is the force on q1 as a result of the jth charge being given by KP
2.6.
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[D] The Electric Field

We have just seen how to calculate the force on a charged particle due to the presence
of a second charge. But if the two charges are nowhere near each other how is that
force ’felt’ by the charge? How can there be this action at a distance?

We can explain this by saying that particle 2 sets up an electric field in the space all
around it. Paticle 1 is affected by this field. Thus particle 2 exerts a force on particle 1
not by touching it but by the electric field its presence has created. ← SCALAR VS VECTOR FIE

We can define the electric field !E at a point, P , in the vicinity of a charge by considering
the electrostatic force acting on a test positive charge of q0 at P .

KEY POINT 2.8

!F = q0
!E

The magnitude of the field at this point is given by e = F
q0

and the direction is that of
the force that acts on the test positive charge.

If we then extend this idea to a collection of charges as we did previously for the
electrostatic force

q

q

q

q

q

q

1

2

3

4

56

F

F1 3

F1 2

F1 4

F1 5

1 6

3.2

Then we can write the force on this charged particle as,

!F1 = q1
!ET

where !ET is the total Electric Field resulting from the other charges. Since the force on
the particle F1 is a linear sum of contributions from all other particles, we can show
that the Electric Field

KEY POINT 2.9

!ET = !E2 + !E3 + · · · =
N

∑

j=2

!Ej

where !Ej is the Electric Field due to the jth charge, so being,

!Ej =
1

4πε0

qj

r2
j

r̂1 j
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So the Electric Field seen by charge q1 is a Linear Vector Summation of the Electric
Fields due to the other charges; the principle of superposition again.

[E] Field lines

Field lines provide a convenient way for us to visualise the vector nature of an electric
field. They are lines of force which show the direction of the field at a point in space,
with the separation between the lines indicating the magnitude or strength.

−−−+++

(a) Positive Charge (b) Negative Charge

3.3
← ANALYSIS

Now consider two charges of +q and −q separated by a fixed distance d as shown.
This configuration is known as an Electric Dipole.

y

d

a

E
ET

E q−q

x

+

−

3.4
← MATHEMATICAL ANALY

KEY POINT 2.10
The total Electric Field is given by

!ET = −
1

4πε0

q d

r3
ı̂

which is parallel to the x-axis and pointing from the positive towards the negative
charge, which is what you expect from the diagram.

Considering KP 2.10 we see that the Electric Dipole is characterised by the vector
quantity

!p = q d ı̂

which is known as the Electric Dipole Moment, which has units of C m.
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Note the direction of !p, it is from the negative towards the positive end of the dipole.
So in terms of the Electric Dipole Moment the Electric Field a distance a perpendicular
to the dipole axis is given by,

KEY POINT 2.11

!ET = −
1

4πε0

!p

r3

We can repeat this calculation at all point in space and form the field lines from a
dipole as shown

+++−−−

E
E

E

+

D

−

3.5
← A

Learning Resources

• Textbook: The treatment of electrostatics starts in HRW in Chapter 21, and much
of the next 11 chapters is concerned with developing towards a treatment of
Maxwell’s Equations. However, we will start (and remain) in the foothills, cov-
ering Chapter 21 and selected bits of Chapter 22.

• Self-Test Questions: available on–line

• Course Questions: Balancing electrostatic forces , Inside the nucleus, Zero net
field.
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S2.13 Fictitious forces
← PREAMBLE

KEY POINT 2.12
Any reference frame accelerating w.r.t. an inertial frame is non-inertial.
When the motion of some body is described from the perspectives of a non-inertial
reference frame Newton’s laws hold only if we introduce fictitious forces which reflect
the acceleration.
Such forces are indistinguishable from gravitational forces (The Principle of Equiva-
lence).

← X

← ANALYSIS

[A] Body at rest in accelerating frame

• Consider body of mass m sta-
tionary in a non-inertial (NI)
frame

• Suppose NI frame has accelera-
tion !aNI with respect to inertial
frame, I.

• Then behaviour of the body w.r.t. NI obey’s Newton’s Laws but with a fictitious force

!FNI = −m!aNI (2.1)

← ANALYSIS

[B] Body at rest in a rotating frame

• This is a special case of [A] where
!aNI is the centripetal accelera-
tion.

aNI

NI

m

I
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• Observers in rotating frame must
invent a fictitious force which

– has magnitude

FNI = mv2/r

– acts out from centre of rota-
tion

This is the centrifugal force.

← WARNING

← I

← A

[C] Body moving in a rotating frame

In addition to the centrifugal force a body moving in a rotating frame ‘experiences’ a
second fictitious force which:

• depends on its speed in the rotat-
ing frame;

• acts at right angles to its path;

• makes the path curved with re-
spect to the rotating frame.

This is the Coriolis force. ← ANALYSIS

← I

← A
Learning Resources

• Textbook: Conspicuously absent from HRW. Those with a desire to find out
more may want to consult Serway and Jewett (Physics, 6th ed) on pages 159-161

• Self-Test Questions: available on–line

• Course Questions: Perspectives, The Principle of Equivalence.
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S3 Energy and Work

Motivation: To describe the changing world around us, we must describe its state.
Energy is one of the key tools that allows us to do this. In this section we explore the
concept of energy: its definition, its conservation and its utility in problem solving.

Objectives: By the end of this section you should

• know how work, kinetic energy and potential energy are defined

• understand why a potential energy can only be defined for a conservative force

• be able to use conservation of energy to solve simple problems

Key Mathematics: integration and differentiation

S3.1 Introduction

[A] What is energy?

• Energy is a scalar quantity associated with the state of a system; work is associated
with changes in that state. The ideas of work and energy provide a new angle from
which to view Newtonian mechanics, and a powerful set of tools for solving prob-
lems.

KEY POINT 3.1
Energy is defined as the ability of a system to do work.

• Energy can come in two forms–

.... kinetic

KEY POINT 3.2
Kinetic energy is the energy a body has by virtue of its motion

....and potential

KEY POINT 3.3
Potential energy is the energy a system stores as a result of its state, shape or position.

← EXAMPLES

← DEMO• The concepts of energy and energy conservation, although consistent with Newtonian
mechanics, are valid in regimes and for systems where Newtonian mechanics does
not hold; at those extreme speeds and tiny distances where relativity and quantum
mechanics reign.
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S3.2 Work
← PREAMBLE

[A] Definition

• When a force acts on a body to produce a displacement, work is done. Work is a scalar
quantity measured in newton-meters (Nm) or Joules (J).

• If a constant force !F acts on a body to produce a straight line displacement !d, the
amount of work W done on the body by the force is given by the dot product (KP
0.3):

W = !F · !d (3.1)

• If the force !F is not constant, and the resultant displacement is not a straight line, the
amount of work that the force does is:

KEY POINT 3.4
Work:

W =

∫ finish

start
!F · d!r

• This is the sum, over the entire path,
of all the infinitesimal bits of work
done along all the infinitesimal dis-
placements d!r, by the force !F which
is, in general, different at every point
along the path.

dr

F

start

finish

← NOTE

• In one dimension, with a varying force F (x)

W =

∫ finish

start
F (x)dx (3.2)

• The work done, W , by the applied
force, F (x), between the start and fin-
ish points is the area under the curve. W

start finish x

F(x)
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[B] Traps for the unwary!

• Work is defined as the work done by the force on the body.

• It can be positive or negative, depending on the sign of the force and the displacement. ← EXAMPLES

• A force acting perpendicular to the direction of motion of a body does no work, since
the scalar product between !F and d!r is zero.

Example: the force of gravity on
a satellite orbiting in a circle is al-
ways perpendicular to the displace-
ment. Forces that do no work are com-
mon in circular motion ( S2.10 ).

drF

• ‘Hard work’ is somtimes nothing of the sort ← DEMO

Learning Resources

• Textbook: HRW Chapter 7. HRW starts with kinetic energy, then moves on to
define work. Otherwise the treatments are identical.

• Self-Test Questions: available on–line

• Course Questions: Work, force and displacement I, Work, force and displace-
ment II, Work as an integral.

S3.3 Power : the rate of working
← PREAMBLE

[A] Definition

• Power is defined as the rate at which work is done. If an amount of work W is done
in time ∆t, the average power over that interval is defined to be
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KEY POINT 3.5
Average Power:

Pav =
W

∆t

• The instantaneous power is the instantaneous rate of doing work:

KEY POINT 3.6
Instantaneous Power:

P =
dW

dt

• The SI unit of power is the watt (W ), which is one joule per second (Js−1).
← COMMENTARY

← T

Learning Resources

• Textbook: HRW chapter 7.9

• Self-Test Questions: available on–line

• Course Questions: Power.

S3.4 Kinetic energy

[A] The work - energy theorem

• The work - energy theorem defines kinetic energy.

KEY POINT 3.7
Work-energy theorem. When a mass m is accelerated by a force along some path, the
total work done on the mass by the force is

W =

∫ f

i

!F · d!r = Kf − Ki

where the initial and final kinetic energies are Ki and Kf respectively.

KEY POINT 3.8
Kinetic energy is the work done to accelerate a particle from rest to velocity !v

K =
1

2
mv2

← ANALYSIS

← EXAMPLE
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Learning Resources

• Textbook: HRW 7.5

• Self-Test Questions: available on–line

• Course Questions: Work and kinetic energy I, Work and kinetic energy II, Vari-
able force.

S3.5 Potential energy

[A] Introduction

• Potential energy is the energy a system stores as a result of its state, shape or position
(KP 3.3).

• A potential energy can only be defined for a conservative force.
← EXAMPLES

[B] Conservative forces

KEY POINT 3.9
If the work done by a force in moving an object between two states is independent of
the path taken between those two states, the force is conservative.

Necessarily, the total work done by a
conservative force in moving an object
around a closed path is zero.

between      and       does not depend on the path

B

A

W

W

1

2

For a conservative force, the work done in moving      
A B

• Examples of conservative forces include:

• the gravitational force ( S2.5 );

• the electrostatic (Coulomb) force;

• linear restoring (‘spring’) forces ( S2.9 ).

• Frictional forces, such as static friction, dynamic friction ( S2.8 ) and drag are not con-
servative: these forces dissipate energy (i.e. remove energy from the system). The
work they do depends on the path followed by the force. ← I

← COMMENTARY

← WORKED EXAMPLE
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[C] Potential energy

• Because the work done by a conservative force in moving a body between the two
states is unique, we can assign a number to every state, (i.e. a function), that tells us
the work done in moving from an arbitrarily chosen reference state to the current state.

• We call this function the potential energy. The work done in moving between any two
states is then the difference in potential energy of the two states.

KEY POINT 3.10
Potential Energy. The difference in potential energy, ∆U , between initial and final
states is defined as the negative of the work done by the associated force

∆U = Uf − Ui = −

∫ f

i

!F · d!r

• Note: The potential energy is often referred to as U rather than ∆U . However, there is
always an implied reference state.

← COMMENTARY

[D] Forces from potential energies

• The force acting at any point can be determined from the potential energy.

KEY POINT 3.11
Force from potential: In one dimension, force is related to potential energy via:

F = −
dU

dx

• A convenient way of thinking about forces and potential energies is to imagine walk-
ing around a hilly landscape. ← D

Learning Resources

• Textbook: HRW Chapter 8.1 - 8.3. (HRW 8th Ed has a new section on Reading a
P.E. curve, 8.6)

• Self-Test Questions: available on–line

• Course Questions: Conservative forces, Force and potential energy.

S3.6 Potential energy: examples

• In this course, you will meet a few different types of potential energy:
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• energy stored in a spring; ← I

← A• gravitational potential energy;

← I• energy stored in a wave;

• There are many, many other sorts of potential energy:

• energy stored in chemical bonds; ← EXAMPLE

• electrical energy stored in a capacitor;

• magnetic energy stored in a field;

• energy stored in excited states of atoms;

[A] Linear (spring) force: potential energy

• The force a spring exerts on a body is proportional to the displacement of the spring (
S2.9 ).

KEY POINT 3.12
The potential energy stored in a spring
with displacement x is

U =
1

2
kx2

Note: convention dictates we choose
the reference point to be the displace-
ment from the equilibrium length.

Reference
Point

← ANALYSIS

← WORKED EXAMPLE

[B] Gravitational potential energy of a body near the earth’s surface

• Near the earth’s surface the gravitational force is constant ( S2.5 ).

KEY POINT 3.13
Gravitational potential energy. The potential energy of a body at height h above some
reference point (say the earth’s surface) is

U = mgh

Note: the reference point we choose is arbitrary ← ANALYSIS
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[C] Gravitational potential energy of two point masses

• The gravitational force acting between two masses is proportional to each mass, and
inversely proportional to the square of their separation (KP 2.4)

KEY POINT 3.14
Gravitational Potential Energy. The gravitational potential energy of a particle of
mass m2 a distance r from a body of mass m1 is

U = −
Gm1m2

r

where G is the gravitational constant: 6.673 × 10−11Nm2kg−2

m F1
G

m
F 2

G

m F1
G

m
F 2

G

r

8r
Reference State is

← ANALYSIS

← T

← T
Learning Resources

• Textbook: HRW Chapter 8.4

• Self-Test Questions: available on–line

• Course Questions: Ski Lift, Gravitational escape energy.

S3.7 Energy conservation

[A] Conservation laws in physics

• If the total amount of some quantity, Q say, does not change with time, we say it is
conserved. Mathematically, we can express this as

dQ

dt
= 0
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• Conservation laws are fundamental laws of nature. ← IS THAT CLEAR?

• Conservation laws are useful because:

• knowing a quantity is conserved is a very valuable aid to problem solving.

• they provide restrictions on the form of hypotheses that can be advanced.

[B] Energy Conservation

Energy cannot magically appear or disappear.

KEY POINT 3.15
Energy Conservation. In a closed system, energy is conserved; it can only be trans-
formed between one form and another.

• A closed system is one in which there is no mass or energy flow across its boundaries.

• It is believed that this conservation law is a fundamental law of nature. ← I

KEY POINT 3.16
Conservation of Mechanical Energy. In a closed system in which only conservative
forces act, then

Ki + Ui = Kf + Uf

where Ki, Kf , Ui and Uf are the initial and final kinetic and potential energies.

This law is useful because it tells us something that does not change, even when vari-
ous types of energy are changing.

• The connections between kinetic energy, potential energy and energy conservation can
be derived very elegantly. ← M

← DEMOS

← WORKED EXAMPLE

← A[C] Violation of energy conservation?

• In some cases it may appear that energy conservation is violated. In fact this is not the
case; what is happening is that energy is being transformed into a form that has not
been accounted for e.g. heat, sound, electrical energy, strain energy, chemical energy.
Often, this transformed energy is difficult to measure.

• One remedy is to reconsider what constitutes our ‘system’ in such a way as to ac-
count for the ‘lost’ energy. In doing this it is sometimes advantageous to introduce
phenomological forces such as friction ( S2.8 ) (which accounts for energy transformed
into heat.)
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• In assessing matters of energy conservation, one has to decide when and whether it is
safe to ignore energy transformed into other hard-to-measure forms such as heat. In
tutorial problems, you will often be given clues, or just told that energy is conserved.

← WORKED EXAMPLE

← T

Learning Resources

• Textbook: HRW Chapter 8.5, 8.8

• Self-Test Questions: available on–line

• Course Questions: Kinetic and potential energy, Energy conservation .... in dis-
guise, Lift Off, Balance, Non-conservative forces, Dissipation.

S4 Linear Momentum

Motivation: The concept of the linear momentum of a system of particles is an ex-
tremely fruitful one in many areas of physics. In this section we develop the tools
needed to describe the motion of such a system, and deduce that momentum must
be conserved for an isolated system. This allows us to analyse elastic and inelastic
collisions.

Objectives: By the end of this section you should

• be familiar with Newton’s 2nd law in its most general form

• understand what is meant by a ‘system of particles’

• be able to calculate the centre of mass, its velocity and momentum

• understand why, for a system of particles, linear momentum is conserved

• be able to analyse inelastic collisions by applying the principle of momentum
conservation

• be able to analyse elastic collisions using momentum and kinetic energy conser-
vation

Key Mathematics: Vectors in one and two dimensions
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S4.1 Preview

[A] The motion of a rigid body

When a rigid body is thrown into the
air, we notice something simple in
its apparently complex motion: one
special point in the object moves as
though

• all the mass were concentrated at
that point

• the external force (gravity in this
case) acts only at that point

This special point, the center of mass, forms the starting point for our study of the
motion of collections (or systems) of particles, of which a rigid body is a special case.

By analysing the dynamics of the center of mass we discover a new fundamental law
of nature: the law of conservation of momentum. We use this new law to analyse
collisions between different bodies, which can be elastic or inelastic. ← DEMO

S4.2 Systems of particles

[A] What is a system of particles?

A system of particles is any set of particles whose properties we wish to consider
collectively.

For example:

• We can think of a rigid object as being
made up of many particles, with fixed
relative positions.

Or alternatively,
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• a collection of gas molecules con-
tained in a box is a system of particles

← NOTE

[B] Centre of Mass

KEY POINT 4.1
The Centre of Mass of a system of particles with positions !ri is defined as

!rcm =
1

M
[m1!r1 + m2!r2 + m3!r3 + ... mn!rn]

=
1

M

∑

i

mi!ri

where the total mass of the system is

M =
∑

i

mi

We can easily check some special cases:

• One particle: the centre of mass is

!rcm =
m1!r1

m1

= !r1.

• Two particles of equal mass: the centre of mass is

!rcm =
m!r1 + m!r2

m + m
=

!r1 + !r2

2

i.e. halfway between the two particles.

• Many particles of equal mass: the centre of mass is the average position of all of the
particles.

You can think of the centre of mass as being a (mass) weighted average of the particles
positions.
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the system

r

r

r
r

1

3

2

m2

m1

m3

m4

4

rcm

Origin

← COMMENTARY

← WORKED EXAMPLE

← COMMENTARY

← DEMO

← WORKED EXAMPLE

← I

← I

← M

← T

Learning Resources

• Textbook: HRW Chapter 9.1, 9.2. Ignore the material on calculating the centre of
mass for continuous objects by integration. This is a straightforward, but tedious,
extension of our definition from which you learn little apart from integration.

• Self-Test Questions: available on–line

• Course Questions: Calculating the centre of mass I, Calculating the centre of
mass II.

S4.3 Motion of the centre of mass

[A] Centre of mass and Newton’s 2nd law

• Let’s begin by writing the centre of mass vector (KP 4.1) in the following way:

M!rcm = m1!r1 + m2!r2 + ... mn!rn (4.1)

• The centre of mass will evolve with time. Its velocity is defined (KP 1.1) by differenti-
ating Equation 4.1 term-by-term with respect to time.

KEY POINT 4.2
Velocity of the centre of mass:

M!vcm = m1!v1 + m2!v2 + ... mn!vn

• The acceleration of the centre of mass is given by another differentiation (KP 1.2)

M!acm = m1!a1 + m2!a2 + ... mn!an

• Using Newton’s 2nd law (KP 2.2) we can write this as
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M!acm = !F1 + !F2 + ... !Fn (4.2)

where !F1 is the force acting on particle 1, etc.

• The forces !F1, !F2, etc, acting on the particles are of two types:

• those acting on the system from outside: external forces

• forces acting within the system: internal forces

• By Newton’s 3rd law (KP 2.3), the internal forces form action-reaction pairs and cancel
from the sum in Equation 4.2. All that is left are the external forces.

KEY POINT 4.3
Newton’s 2nd law for a system of particles. The motion of the centre of mass is
governed by external forces only

!Fext = M!acm

• This gives us another way of viewing the centre of mass:

KEY POINT 4.4
The centre of mass of a system of particles is that point that moves as though all of the
mass were concentrated there and all external forces were applied there.

← A

← M

[B] Consequences

KP 4.3 is the key result. It tells us that:

• if the centre of mass has zero velocity and no external forces act, then regardless of
the motion of the individual bodies in the system, the position of the centre of mass
remains fixed ( Making use of the centre of mass II ).

• linear momentum is conserved. We will learn more about linear momentum in subse-
quent sections.

← T

Learning Resources

• Textbook: HRW Chapter 9.3

• Self-Test Questions: available on–line

• Course Questions: Making use of the centre of mass I.
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S4.4 Linear momentum

[A] Definition

KEY POINT 4.5
The Linear Momentum of a single particle is defined as the product of the particle’s
mass m, and its velocity !v:

!p = m!v

Note: this is a vector equation.

[B] Newton’s 2nd Law

KEY POINT 4.6
Newton’s 2nd Law is most economically expressed in terms of the momentum:

!F =
d!p

dt

• This is identical to the previous definition (KP 2.2), provided the mass of the particle
is constant

!F =
d!p

dt
=

d

dt
(m!v) = m

d!v

dt
+ !v

dm

dt
= m

d!v

dt
= m!a

• This form of the 2nd law is useful when the mass of a body changes with time, for
instance when a rocket takes off. ← I

[C] Integral form

When a force acts on a body, the momentum gained by the body is just the sum (or
integral) of all the forces acting over time. This allows us to define an average force in
terms of the momentum.

∫ t

0

!F (t)dt = !p(t) − !p(0) = !∆p

KEY POINT 4.7
The average force acting on a body over time ∆t producing momentum change !∆p is
defined as:

!Fav∆t = !∆p
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← WORKED EXAMPLE← T

Learning Resources

• Textbook: HRW Chapter 9.4, 9.5

• Self-Test Questions: available on–line

• Course Questions: Kinetic energy and linear momentum.

S4.5 Linear momentum and its conservation

[A] Linear momentum of a system of particles

Using the velocity of the centre of mass (KP 4.2), and the definition of linear momen-
tum for a single particle (KP 4.5), we can identify the total linear momentum of the
system !Ptot as follows:

KEY POINT 4.8
Linear momentum of centre of mass is defined as

!Ptot = M!vcm = !p1 + !p2 + ... !pn

[B] Newton’s 2nd law

We can now express Newton’s 2nd law in terms of the momentum.

KEY POINT 4.9
Newton’s 2nd law for a system of particles is:

!Fext =
d!Ptot

dt

← WORKED EXAMPLE

[C] Conservation of Linear Momentum

If the total external force acting on a system is zero then we can see that the total linear
momentum of the system must be a constant. This is the law of conservation of linear
momentum.
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KEY POINT 4.10
Conservation of Linear Momentum: if a system of particles is isolated from its sur-
roundings then linear momentum is conserved:

d!Ptot

dt
= 0 ⇒ !Ptot = constant

Note: Since linear momentum is a vector quantity, each component of linear momen-
tum is conserved separately. If a component of the net external force on a system is
zero along an axis, then the component of linear momentum of the system along that
axis cannot change.

[D] Isolated systems

Saying a system is isolated is really another way of saying that the total external force
is zero; hence that linear momentum is conserved within the system.

Examples of isolated (or approximately isolated) systems:

• A star/brick/collection of atoms in free space.

• A car sliding on very slippy ice (provided the ice is very slippy and air resistance is
ignored).

• A railway truck on horizontal rails (provided the wheels are well oiled, and rolling
resistance is very small).

When trying to apply the law of conservation of linear momentum, you should make
sure the system you choose is isolated (at least in the direction you want). Addition-
ally, if you want to apply the law of conservation of energy, the system must be closed
(no particles enter or leave the system). ← WORKED EXAMPLE

Learning Resources

• Textbook: HRW Chapter 9.7

• Self-Test Questions: available on–line

• Course Questions: Making use of the centre of mass II, Wait for weight.

S4.6 Collisions

[A] Context

• A collision occurs whenever two bodies interact strongly for a short time.

• Collisions can be completely elastic, completely inelastic, or somewhere in between. ← D

← D
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• Conservation of linear momentum and where appropriate energy can be very power-
ful techniques for analysing collisions.

← A

← EXAMPLES

← COMMENTARY[B] Impulse

• In a collision, forces can vary rapidly as a function of time. We use impulse to quantify
the strength and duration of a collision.

KEY POINT 4.11
Impulse is the change in momentum a particle experiences during a collision

!I =

∫ t

0

!F (t)dt = !∆p

By definition, the impulse is equal to the average force (KP 4.7) acting during the
collision multiplied by the duration of the collision:

!I = !Fav∆t

For a 1D collision, the impulse is the
area under the F (t) curve describing
the collision

F(t) 

t

average force

actual force

← DEMO

[C] Inelastic collisions

• Collisions in which energy is dissipated are termed inelastic ← D

• The collision of two cars, with the subsequent tearing and deforming of metal, plastic
and organic matter dissipates a lot of energy, in work done on the metal, in noise and
in heat: car crashes are definitely inelastic.

[D] Elastic collisions

• Collisions in which no energy is dissipated are termed elastic. ← D
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• Collisions are elastic, if, for a closed system of two particles the total kinetic energy (in
addition to the momentum) is conserved. Using the same notation as above, we have
an additional relation expressing conservation of kinetic energy.

1

2
m1v

2
1i +

1

2
m2v

2
2i =

1

2
m1v

2
1f +

1

2
m2v

2
2f (4.3)

• the collision of a hard rubber ball with the floor is almost completely elastic. The ball
rises almost to the height from which it was released.

← DEMO

← A

[E] Problem solving tactics for collisions

• Decide on the boundaries of your system.

• Decide if your system is closed and isolated. Closed means no matter passes through
the boundaries. Isolated means interactions only occur between particles in your sys-
tem: the net external force is zero.

• Decide if energy is conserved. In most problems you will meet it will not be.

• Remember that in a closed, isolated system, linear momentum is conserved regardless
of whether the collision is elastic or inelastic. If particles 1 and 2 have momenta !p1 and
!p2 respectively, momentum conservation implies that

!p1i + !p2i = !p1f + !p2f (4.4)

where additional subscripts i and f denote initial and final momenta.

• Remember also that linear momentum will be conserved for each of its components.
(If the system is not isolated it may be the case that momentum will be conserved in
one component only, say the component perpendicular to an external force.)

• Select two states before and after a collision, and equate momenta (and where appro-
priate energies) before and after the collision. Solve for what is required.

← WORKED EXAMPLE

← T

Learning Resources

• Textbook: HRW 9.6 and 9.8-9.11

• Self-Test Questions: available on–line

• Course Questions: A simple collision, Two spheres colliding, Road Accident, A
reprise on problem solving.
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S4.7 Relativity: Mass, Momentum and Energy

This section is included for general interest. It is not part of the examinable programme
of the course.

Learning Resources

• Textbook: The presentation here is taken mainly from ‘Special Relativity’ by A.P.
French (Van Nostrand Reinhold (UK) Ltd: Wokingham)

S5 Angular Momentum

Motivation: In this section we develop concise methods of describing rotational mo-
tion using quantities such as angular velocity, angular momentum and moment of
inertia, the rotational analogues of velocity, momentum and mass. Using this new lan-
guage, we can describe such counterintuitive phenomena as the behaviour of spinning
tops and gyroscopes, and find out why it is easier to ride a bicycle with bigger wheels.

Objectives: By the end of this section you should

• know the analogies between linear and rotational motion

• understand the concepts of angular velocity, angular momentum and torque,
and their connection to Newton’s second law expressed in angular variables

• be able to use conservation of angular momentum to describe simple physical
phenomena.

Key Mathematics: Vector cross products

S5.1 Linear and rotational motion

[A] Analogies between linear and rotational motion

To describe rotational motion we use angular variables. These are defined so that
Newton’s laws take on their familiar forms when expressed in angular form. The
rotational analogues of linear variables and physical laws are listed below.
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KEY POINT 5.1

Linear Motion Angular Motion

position x ←→ θ angle
velocity !v ←→ !ω angular velocity

acceleration !a ←→ !α angular acceleration
mass m ←→ I moment of inertia

momentum !p ←→ !L angular momentum
force !F ←→ !τ torque

!F = m!a ←→ !τ = I!α
!p = m!v ←→ !L = I!ω

K.E. K = 1

2
mv2 ←→ KR = 1

2
Iω2 Rotational K.E.

These equations are more than a convenient rewriting of Newton’s laws. They contain
new physics, in particular the law of conservation of angular momentum. During this
module, we will explore these analogues, and their consequences.

Be warned: they can be very counterintuitive!

S5.2 Angular positions, velocities and accelerations

[A] Using vectors to describe rotations

• To describe the rotation of a rigid body, we need to specify

• the axis of rotation

• the sense of the rotation (clockwise/anti-clockwise)

• the magnitude of the rotation.

• We can describe a rotation using a rotation vector:

• the magnitude of the axial vector is given by the rotation angle in radians.

• the direction of the rotation vector is given by the axis of rotation in conjunction
with the corkscrew rule
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Corkscrew rule: Take a corkscrew and align it with
the axis of rotation. Turn it in the sense of the rota-
tion.
The direction it moves defines the direction of the
rotation vector.

vector
rotation

• Under a rotation every point on the body moves in a circle centred on the rotation axis.

[B] Angular position

• To define the angular position of a rigid body, we need to specify the rotation axis, and
an origin. We choose the origin as follows:

• we draw an imaginary line in the rigid body, which will rotate with the body

• we draw a line outside the body, which will remain fixed.

• the angular position of the body can then be defined as the angle, θ, the line in
the body makes with the line fixed outside the body.

θ

Rotation
axis

Zero angular
position

Reference line

• The definitions of angular displacement, velocity and acceleration can now be com-
pleted in a straightforward manner.

← COMMENTARY
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[C] Angular displacement

KEY POINT 5.2
Angular Displacement: If a rigid body rotates about a fixed axis changing the angular
position from θ1 to θ2, the body undergoes an angular displacement

∆θ = θ2 − θ1

Note: angular displacement is measured in radians.

[D] Angular velocity

KEY POINT 5.3
Average angular velocity: If a rigid body rotates around a fixed axis producing an
angular displacement ∆θ in time ∆t, the average angular velocity about the axis is

ωav =
∆θ

∆t

KEY POINT 5.4
Instantaneous angular velocity is defined as the average angular velocity over the
next infinitesimal time interval

ω = lim
∆t→0

∆θ

∆t
=

dθ

dt

Note: the units of angular velocity are rad s−1.
← NOTE

• Note: strictly speaking, what we have defined above are angular speeds, not velocities,
since we have not specified the direction of rotation.

• We can define an angular velocity vector, !ω. The axis of rotation determines the direc-
tion of the angular velocity vector; the magnitude of the vector is the angular velocity
ω as defined above and the sense of rotation is specified by the corkscrew rule.

ω

fast rotation = big vector

velocity vector
A large angular 

slow rotation = small vector

ωvelocity vector
A small angular 
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← WORKED EXAMPLE

[E] Angular acceleration

KEY POINT 5.5
Average angular acceleration: If a rigid body accelerates about a fixed axis producing
a change in angular velocity ∆ω in time ∆t the average angular acceleration is

αav =
∆ω

∆t

KEY POINT 5.6
Instantaneous angular acceleration is defined as the average angular acceleration
over the next infinitesimal time interval

α = lim
∆t→0

∆ω

∆t
=

dω

dt

Note: the units of angular acceleration are rad s−2.

• We can define an angular acceleration vector, !α. The rotation axis specifies the direc-
tion of the angular acceleration vector; the magnitude is the angular acceleration α as
defined above; the sense is given by the corkscrew rule.

← WORKED EXAMPLES

Learning Resources

• Textbook: HRW Chapter 10.1-10.3

• Self-Test Questions: available on–line

• Course Questions: Rotating wheel, Visualising angular velocities, Injuns!.
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S5.3 Relations between angular and linear quantities

[A] Position

KEY POINT 5.7

If a body is rotated through an angle θ, a point a dis-
tance r from the rotation axis is moved in a circular arc
of length

s = rθ

r

sθ

← COMMENTARY

[B] Speed and period

KEY POINT 5.8
The speed, v of a point a distance r from the rotation axis of a body with angular
velocity ω is

v = r
dθ

dt
= rω

The period of revolution is given by [distance]/[velocity]

T =
2πr

v
=

2π

ω

← WORKED EXAMPLE

[C] Velocity

KEY POINT 5.9

The velocity of a point !r from the rotation axis is related to
the angular velocity vector, !ω by the cross product (KP 0.4)

!v = !ω × !r

ω

r

v

ω

(      points out of the page)
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[D] Acceleration

KEY POINT 5.10

The tangential component of the (linear) accelera-
tion is

at = r
dω

dt
= rα.

The radial component of the (linear) acceleration, ar

(KP 1.8) is

ar =
v2

r
= rω2

α

y

x

ar

ta

(      points out of the page)

← COMMENTARY

← T

← T

← T

Learning Resources

• Textbook: HRW Chapter 10.5

• Self-Test Questions: available on–line

• Course Questions: Angular velocity.

S5.4 Constant acceleration equations

[A] Rotation with constant acceleration

Consider the motion of a body rotating about a fixed axis, with constant acceleration.

• Since the rotation axis is fixed, displacement, velocity and acceleration vectors all point
in the same direction. The motion is, in a sense, one dimensional.

• The relationships between displacement, velocity and accleration (KP 5.4 and KP 5.6)
are

ω =
dθ

dt
; α =

dω

dt

• By analogy with the relations describing one dimensional linear motion (KP 1.1 and
KP 1.2), we can immediately write down the constant acceleration equations (c.f. KP
1.4)
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KEY POINT 5.11
Constant Acceleration Equations:

ω = ω0 + αt (a) θ − θ0 = ω0t +
1

2
αt2 (b) ω2 = ω2

0 + 2α(θ − θ0) (c)

← WORKED EXAMPLE

Learning Resources

• Textbook: HRW Chapter 10.4

• Self-Test Questions: available on–line

• Course Questions: Angular acceleration.

S5.5 Kinetic energy of a rotating body: moment of iner-
tia

• A rotating body stores kinetic energy.

• The amount of kinetic energy stored depends on the angular velocity and the distri-
bution of mass around the rotation axis - the moment of inertia.

• The moment of inertia is in general different for rotations about different axes.

• Let’s calculate the kinetic energy of a rigid rotating body composed of n particles, mass
mi, located a distance ri from the rotation axis

K =
n

∑

i=1

1

2
miv

2
i =

n
∑

i=1

1

2
mi

(

r2
i ω

2
)

=
1

2

(

n
∑

i=1

mir
2
i

)

ω2

• This defines the moment of inertia, which is the rotational equivalent of mass.

KEY POINT 5.12
Moment of inertia for a rigid body composed of n particles mass mi a distance ri from
the rotation axis is

I =
n

∑

i=1

mir
2
i

Note: the moment of inertia depends on the rotation axis

• The units of moment of inertia are kg m2.
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• Using KP 5.8 we can rewrite the rotational kinetic energy of a body in a form reminis-
cent of KP 3.8

KEY POINT 5.13
Rotational kinetic energy of a rigid body rotating about a fixed axis is

K =
1

2
Iω2

where I is the moment of inertia about that axis.
← COMMENTARY

Example: the moment of inertia of a solid cylinder, radius R,
length L, mass M about two different axes.
Note: for different rotation axes, we get different I’s.

I= MR
2

2

ML
12

2

MR
4 

2

  +         

I =         ω

ω

← WORKED EXAMPLE

← DEMO

← T
Learning Resources

• Textbook: HRW Chapter 10.6 and 10.10. Ignore section 10.7 on calculating mo-
ments of inertia by integration.

• Self-Test Questions: available on–line

• Course Questions: Translational and rotational motion.

S5.6 Torque

[A] Torque

• A torque is a vector that describes the ability of a force to change the angular velocity
of a body.
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KEY POINT 5.14

Torque. Applying a force, magnitude F to
a point a distance r from point O, results in
a torque about O of magnitude

τ = rF sin θ.

The units of torque are N m.

θ

O

F

r

There are two equivalent ways of computing the torque:

• Multiplying the tangential compo-
nent of the applied force, Ft, by the
distance from the rotation axis

τ = rFt.

F

tF
rF

θ

O

r

• Multiplying the applied force by r⊥,
the perpendicular distance between
the rotation axis and an extended line
running through the vector F (the
line of action of !F ).

τ = r⊥F

F

   of F

O

θ

r

r
Line of action 
of F
Line of action 

Moment arm
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[B] The torque vector

KEY POINT 5.15
Torque vector: The torque about a point O is the vector defined by

!τ = !r × !F

where !r is the point at which the force
!F is applied with respect to point O. r

τ

F 
O

← WORKED EXAMPLE

← A

← T
Learning Resources

• Textbook: HRW Chapter 10.8 and 11.6

• Self-Test Questions: available on–line

• Course Questions: Torque, Torque and angular acceleration, Slowing flywheel.

S5.7 Angular momentum

[A] Definition

• Like all other linear quantities, linear momentum has its angular counterpart: angular
momentum.

• Angular momentum is a vector with units kg m2 s−1.

KEY POINT 5.16
The angular momentum of a particle with respect to a point O is

!L = !r × !p = m (!r × !v)

!r is the position of the particle with re-
spect to O.

v
m

O
r

L

← A
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[B] Angular momentum of a rigid body

KEY POINT 5.17
The magnitude of the angular momentum of a rigid body rotating about an axis with
angular velocity ω is

|!L| = Iω

where I is the moment of inertia (KP 5.12) about the rotation axis. The direction of !L
is along the axis in the sense of the rotation vector.
Note: the moment of inertia depends on the rotation axis.

[C] Newton’s 2nd law for rotation

• It is possible to formulate Newton’s 2nd law in rotational form.

• By considering the total angular momentum of a set of particles about a given point,
and using Newton’s third law (KP 2.3) to eliminate internal forces, one obtains the
general expression relating torque and angular momentum.

KEY POINT 5.18
Newton’s 2nd Law: angular form relates the total external torque, !τext, acting on a
system of particles, to the total angular momentum !L of the system about the same
point.

!τext =
d!L

dt

!τ and !L are expressed with respect to the same origin.

[D] Special case: Newton’s 2nd law for rigid bodies

For the special case of a rigid body rotating about an axis, Newton’s second law takes
a particular form involving the moment of inertia.

KEY POINT 5.19
Newton’s 2nd law for rigid bodies: A torque, τ , applied to a rigid body rotating about
a fixed axis produces an angular acceleration α about that axis

τ = Iα = I
dω

dt
= I

d2θ

dt2

where I is the moment of inertia about the rotation axis, ω the angular velocity and θ
the angular displacement.

← T

← T

← T
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Learning Resources

• Textbook: HRW Chapter 10.9. 11.7-11.10

• Self-Test Questions: available on–line

• Course Questions: Spot the difference, Angular momentum.

S5.8 Angular momentum conservation

[A] Conservation law

Given KP 5.18, in the absence of any external torques, we conclude that angular mo-
mentum is conserved.

KEY POINT 5.20
Angular momentum conservation. If the net external torque acting on a system
is zero, the angular momentum !L of the system remains constant, no matter what
changes take place within the system.

← WORKED EXAMPLE

← DEMO

[B] Consequences

There are many profound consequences of the law of conservation of angular momen-
tum. In particular it explains:

• how gyroscopes behave; ← I

← M

← I

• why it’s easier to ride a bicycle with big wheels;

← I• how gymnasts, divers and trapeze artists somersault;
← I

← I
• the shape of the solar system;

← I• why neutron stars and black holes rotate so fast.
← I

• children’s toys ! ← I

← I

Learning Resources

• Textbook: HRW Chapter 11.11-11.12 has many good examples.

• Self-Test Questions: available on–line

• Course Questions: Stop the earth, I want to get off!, Torque and angular mo-
mentum, Skaters, Roundabout.
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S6 Oscillations

Motivation: Understanding and exploiting oscillations and waves is central to many
aspects of science including physics, chemistry, biology and engineering. In this sec-
tion we will set out the key concepts, and explore them in the context of a wide range
of examples. We will end up in chaos.

Objectives: By the end of this section you should

• be familiar with the key concepts and terms used to describe oscillatory and
wavelike phenomena

• be able to set up the simple harmonic equation of motion for a range of systems
and determine the associated SHM frequency

• be familiar with the mathematical description of sinusoidal waveforms and the
variety of phenomena occurring when different waveforms are combined

Key Mathematics: sines, cosines and differential equations

S6.1 Introduction: what and why

• Oscillations are repetitive, often regular, changes of some ’thing’

• Waves are evident in the behaviour of many individual oscillating ’things’.

• These phenomena are widespread in science and technology. ← I

← I

← I

← I

← I

← I

← I

← I

← I

← I

← I

• They are characterised by an enormous range of time and length scales.

← EXAMPLES

• But this diversity is underpinned by a single set of tools (concepts and supporting
mathematics)

• The tools ’empower’ (give us generalisable understanding) and will be central here.

• We focus on ‘oscillations’; the extension to ‘waves’ follows in Physics 1B

Learning Resources

• Textbook: HRW 15.1-15.2
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S6.2 Simple Harmonic Motion: the physical context

[A] Kinds of equilibrium

• A body subject to no net external force or torque, and initially at rest, will remain so
(KP 2.1): it is in static equilibrium.

• We can usefully distinguish between three kinds of static equilibrium which differ
according to the forces called into play when the body is displaced a little from the
equilibrium position.

(a) (b) (c)

• In unstable equilibrium (figure (a)) the forces drive the body further away from
the equilibrium position.

• In stable equilibrium (figure (b)) the forces drive the body back towards the equi-
librium position.

• In neutral equilibrium (figure (c)) the body continues to experience no net force.

• We are concerned entirely with systems near a point of stable equilibrium.

[B] What happens near stable equilibrium

• Consider the behaviour of a system near a position of stable equilibrium.

• To be specific, we will choose
the mass-spring system (figure
(b) above; and right)

• But we will then see that our ar-
guments are general.

x

• We can describe the behaviour in two entirely equivalent ways:

• in the language of forces
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• in the language of potential energies

x

F(x) U(x)

x

• The force called into play is linear and restoring ( S2.9 ):

F (x) = −kx

with k a positive constant.

• The associated potential energy is given by

U(x) = U(0) +
1

2
kx2

where U(0) is a constant (frequently set to zero).

• The two functions are related by KP 3.11:

F = −
dU

dx

• The fact that x = 0 is a point of equilibrium implies that the force is zero there. Hence

dU

dx
|x=0= −F (x = 0) = 0 (6.1)

so U(x) has a turning point at x = 0.

• The fact that x = 0 is a point of stable equilibrium implies that the force is restoring ie
that k > 0. Hence

d2U

dx2
|x=0= −

dF

dx
|x=0= k > 0 (6.2)

implying that the turning point is a minimum.

• These results hold true more generally:
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KEY POINT 6.1
The behaviour of a body given a small displacement from a point of stable equilibrium
can be described, equivalently, by a force F (x) and a potential energy U(x) with the
forms

F (x) = −kx and U(x) = U(0) +
1

2
kx2

with k > 0. The point x = 0 is a minimum of the potential energy.
← COMMENTARY

[C] SHM: the key equation

• Again consider the specific case of the mass-spring system.

• Suppose that (at some instant) the mass, m say, has some displacement x.

• Its acceleration at that instant follows from Newton’s 2nd Law (KP 2.2)

ma = m
d2x

dt2
= mẍ = F (x) = −kx

where we have assumed that the only force the mass experiences is that due to the
spring.

• We will write this equation in the form

ẍ = −ω2x (6.3)

where

ω ≡

√

k

m
(6.4)

• At this point ω is a convenient abbreviation; note that its units are s−1.

• Equation 6.3 is the equation of motion for the mass: it expresses the acceleration at an
instant in terms of the displacement at that instant.

• The motion that emerges from this equation

is known as simple harmonic motion (SHM).

• We may generalise as follows:
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KEY POINT 6.2
The equation of motion of a system near to a point of stable equilibrium is of the form

ẍ = −ω2x

where ω is a constant, characteristic of the system. This is the fundamental equation
of simple harmonic motion. A system obeying this equation is described as a simple
harmonic oscillator.

← COMMENTARY

Learning Resources

• Textbook: HRW section 15.2-15.3

• Self-Test Questions: available on–line

• Course Questions: Kinds of equilibrium, Taylor series expansion.

S6.3 The SHM equation: a general tour
← PREAMBLE

[A] The solution: algebra

• The mathematical problem is to solve the SHM equation (KP 6.2).

• This is a differential equation; solving it means finding the general form of a function
x(t) which satisfies it.

• Not all differential equations are solvable in this way; but this one is.

• It is solvable (easily) because it is linear:

KEY POINT 6.3
The general solution to the SHM equation ẍ = −ω2x is

x(t) = xm cos(ωt + φ)

where xm and φ are constants determined by the initial conditions.
← COMMENTARY
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[B] Visualisation: the role of amplitude and phase

• xm is called the amplitude of the
motion

• Since the cosine function varies
between ±1 the value of x varies
between ±xm

• The figure shows x(t) for two
values of xm, with one twice the
other.

• The ’natural’ unit of time is the
period

T = 2π/ω

0.0 0.5 1.0 1.5 2.0
TIME, t (units: T)

D
IS
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EM
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T,
  x

• φ is called the initial phase of the
motion, or the phase constant.

• We can write

ωt + φ = ω(t + φ/ω)

• Thus a solution with a given
φ is identical to a zero-φ solu-
tion shifted bodily along the time
axis.

• The figure shows x(t) for two
values of φ differing by φ = 2π/6.
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TIME, t (units: T)
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  x

• There is another useful way of vi-
sualising the solution to the SHM
equation and the role of xm and
φ.

• Think of a particle moving with
constant angular velocity ω anti-
clockwise in a circle of radius xm

• Focus on the radial vector from
the centre to the particle.

• Suppose that at t = 0 this vector makes an angle φ with the x-axis.

• Then at time t this angle is ωt + φ
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• The x coordinate of the particle is the projection of the radial vector on the x axis:

x = xm cos(ωt + φ)

which is the SHM solution.
← I

← A

← A

← M

[C] Visualisation: displacement, velocity and acceleration

• The accompanying figure shows
the behaviour of

– the displacement:

x(t) = xm cos(ωt + φ)

– the velocity:

v(t) = ẋ = −ωxm sin(ωt + φ)

– the acceleration:

a(t) = ẍ = −ω2xm cos(ωt+φ) = −ω2x(t)

on the same time-axis.

VELOCITYACCELERATION

DISPLACEMENT

TIME
T

• At the equilibrium position, x = 0, the acceleration is zero but the speed is maximal.

• At the extremes of motion x = ±xm the speed is zero but the acceleration is maximal.

• The velocity is π/2 out of phase with the displacement.

[D] How initial conditions fix amplitude and phase

• The initial conditions for any equation of motion are defined by two quantities, the
displacement and the velocity.

• These two quantities x(0) and v(0) = ẋ(0) together define the amplitude xm and the
initial phase φ.

• The relationships are expressed in the equations:

tanφ = −
v(0)

ωx(0)
and x2

m = x(0)2 +
v(0)2

ω2
(6.5)

← PROOF
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Check It!

• Are the units OK?

• Does it make sense?

[E] All about the ’frequency’

• The physical quantity represented by ω in the above equations is called the angular
frequency of the motion.

• The analogy between SHM and circular motion (see above) explains this terminology.

• There are alternative ways of expressing the same thing:

• The frequency is defined by

f =
ω

2π
(6.6)

and gives the number of cycles completed each second

• The period is defined by

T =
2π

ω
=

1

f
(6.7)

and gives the time required to complete one cycle.

← COMMENTARY

• Note the units of the three quantities:

quantity symbol units
angular frequency ω rad · s−1

frequency f s−1 ≡ Hz
period T s

• Finally note the fundamental differences

• xm and φ are fixed by initial conditions –ie how we start the system off

(displaced but from rest? with a push from the equilibrium position? )

• ω and T are fixed by the physical system itself

– what kind of system it is (spring, pendulum, drum . . . )

– its particular physical parameters (spring constant, length of support, tautness
. . . )
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• In particular T is independent of the amplitude of the motion, xm ← THINK ABOUT IT!

← T

Learning Resources

• Textbook: HRW 15.3

• Self-Test Questions: available on–line

• Course Questions: The SHM equation, Visualising SHM behaviour, Finding the
amplitude and phase: initial conditions, Thinking about SHM, Consolidation
exercise.

S6.4 The SHM equation: applications

[A] The task and the strategy

• We have established ( S6.2 ) that if a system in stable equilibrium is given a displace-
ment x the resulting time-evolution of x will follow the SHM equation

ẍ = −ω2x

where ω follows from the properties of the system.

• We have also established that the general solution to this equation of motion is

x(t) = xm cos(ωt + φ)

where xm and φ follow from the initial conditions.

• To apply the general theory to any specific case we are faced with one task: we must
determine the SHM frequency.

• The strategy is always the same:

• We identify an arrangement of stable mechanical equilibrium, whose signature is
that it is a minimum of potential energy.

• We think of what happens if the system is displaced by a small amount x from
equilibrium; we usually have a choice as to what x will represent.

• We use Newton’s laws to set up the equation of motion for x.

• If all goes well we find that this equation can be written in the form

ẍ = − something-or-other × x

where the something-or-other is determined in terms of the properties of the sys-
tem.
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• We conclude that the x-coordinate of this system will exhibit SHM with angular
frequency

ω =
√

something-or-other

• This concludes the job: anything else we need is already available in our general
SHM results.

• The following applications show this strategy at work.

[B] Application: mass on spring

A mass m rests on a horizontal frictionless surface,
and is attached to a wall by a spring of force con-
stant k. Establish the motion if the mass is pulled a
small distance (stretching the spring from its natu-
ral length), and then released.
[Yes: you have seen this example before; it is useful
to help establish the sequence of steps in the strat-
egy; you should work through it yourself first; then
check what you have done against the on-line notes
.]

← SOLUTION

Results

KEY POINT 6.4
A mass m subject to a linear spring-force of spring-constant k will exhibit SHM of
angular frequency

ω =

√

k

m

Check It!

• Are the units OK?

• Does it make sense?

← COMMENTARY

← M
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[C] Application: hydrogen molecule

A molecule of hydrogen can be modelled as two
particles of mass mH = 1.7 × 10−27 kg linked by
a bond viewed as a spring of spring constant k =
5.2× 102 N ·m−1 Establish the motion if the bond is
compressed and then released.

← SOLUTION

Results

The molecular bond (spring) exhibits SHM with angular frequency

ω =

√

2k

m
= 7.8 × 1014rad · s−1

← COMMENTARY

← I

[D] Application: simple pendulum

A simple pendulum comprises a point mass m suspended from
a fixed point by a string of length L. Establish the motion if the
bob is pulled to one side and then released.

m

L
← SOLUTION

Results

KEY POINT 6.5
A pendulum comprising a point mass suspended from a fixed point by a light string
of length L exhibits SHM of angular frequency

ω =

√

g

L

provided the angular displacement from the vertical is small.

Check It!

• Are the units OK?

• Does it make sense?

← COMMENTARY

← M



LECTURE NOTES 82

[E] Application: physical pendulum

A physical pendulum is made from a sheet of steel,
of mass m, pivoted about an axis through a point a
distance d from its centre of mass. The moment of
inertia about this axis is I . Establish the motion if
the sheet is pushed to one side and then released.

d

AXIS

CoM ← SOLUTION

Results

The physical pendulum exhibits SHM of angular frequency

ω =

√

mgd

I
(6.8)

provided the angular displacement from the vertical is small. ← COMMENTARY

← REVIEW

[F] The core physics of SHM: stiffness versus inertia

• We can identify a common underlying structure in these examples.

KEY POINT 6.6
The SHM frequency ω is determined by the properties of the system; it can be written
in the generic form

ω =

√

measure of stiffness of system

measure of inertia of system

• By ’stiffness’ we mean strength of effects restoring equilibrium

• By ’inertia’ we mean strength of effects resisting changes in motion

• Oscillation results from an interplay between the two: ’stiffness’ favours return to
equilibrium; inertia results in overshoot beyond equilibrium.

• While ’stiffness’ and ’inertia’ may each take different forms, if correctly identified their
ratio has units 1/[second]2

• These insights are enough to allow one to estimate frequencies for ’new’ problems...with
virtually no mathematics!
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← EXAMPLE

← T

Learning Resources

• Textbook: HRW 15.5-15.6

• Self-Test Questions: available on–line

• Course Questions: The familiar mass spring system, A different mass-spring
system?, Still more mass-spring systems, Thinking about the pendulum, Swing-
ing stick, Swinging leg, Bouncing a ball.

S6.5 Energy conservation in SHM

[A] Why SHM entails energy conservation

• In section S6.2 we saw that SHM emerges when we have a mechanical system with
an associated potential energy:

• The minimum of the PE identifies an equilibrium position.

• SHM results if the system is displaced a little from that point, provided the equi-
librium is stable.

• If the only force that affects the motion is the one associated with this potential energy
then the system is conservative.

• In section S3.7 we saw that the total (kinetic and potential) energy in such a system is
conserved (ie constant).

• We must thus expect that, quite generally, mechanical energy is conserved within
SHM.

• We show this explicitly for the mass-spring system.
← ANALYSIS

KEY POINT 6.7
In a mechanical system exhibiting SHM the sum of the kinetic and potential energy
remains constant at its initial value:

K + U = E =
1

2
mx2

mω2 =
1

2
kx2

m

← COMMENTARY

[B] Variation of K and U during the SHM cycle

• Although the sum of K and U remains constant during the SHM cycle each of them
varies individually.
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• One can think of energy being continually exchanged between the two forms.

• We can display the variation as a function of time or as a function of space (displace-
ment).

• The exchange of KE & PE as
function of t is shown in the fig-
ure

• Each energy has a maximum
twice in each cycle.
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• The exchange of KE & PE as
function of x. is shown in the fig-
ure

• One can make this picture less
abstract by thinking of a particle
sliding on a frictionless parabolic
surface.
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• The ’distance’ between the x−axis and the parabola is the potential energy

• The ’distance’ between the parabola and the total energy is the kinetic energy.

• The particle never gets beyond ±xm because its kinetic energy runs out there.

• This turns out to be a useful platform for thinking about the quantum world . . .

← I

[C] From energy conservation to the SHM equation

• We have shown that a system exhibiting SHM displays conservation of mechanical
energy.

• We can reverse this argument:
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← ANALYSIS

KEY POINT 6.8
If the total energy of a system can be written as

E = U + K =
1

2
Sx2 +

1

2
Iẋ2 = constant

where S and I are constants, then the coordinate x will exhibit SHM with frequency

ω =

√

S

I

← COMMENTARY

← T

Learning Resources

• Textbook: HRW 15.4

• Self-Test Questions: available on–line

• Course Questions: Energy in SHM, Water oscillations in a U-tube, Consolidation
exercise.

S6.6 Driving and damping

[A] An overview: the ins and outs of energy

• Thus far we have assumed that our oscillator is effectively isolated from anything else:
its energy is thus constant.

• We must now allow for two possibilities:

• There is some mechanism that feeds energy into the oscillating system: we call
this driving.

• There is some mechanism that draws energy out of the oscillating system: we call
this damping.

• We shall initially consider these two mechanisms separately; then together.

• We shall explore, but not prove the main results.
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[B] Feeding energy in: driving

• Consider a simple harmonic os-
cillator of natural frequency ω
subjected to a driving force
which oscillates at frequency ωD

Fdriving = FD cos(ωDt) (6.9)

• The figure shows one example
. . . but there are many others.

DRIVING
MECHANISM

← EXAMPLES

• The equation of motion:
mẍ = −kx + FD cosωDt

• The resulting behaviour:

x exhibits SHM but

• at the frequency ωD (not ω)

• with an amplitude that is
determined by

xm =|
FD/m

ω2 − ω2
D

| (6.10)

• If ωD is close to ω the ampli-
tude xm is large. This is called
resonance.

0.0 0.5 1.0 1.5 2.0
 ωD  

 (units:  ω )

0.0

x m

KEY POINT 6.9
If a system of natural oscillation frequency ω is driven by some disturbance oscillating
at frequency ωD the system will oscillate at ωD with an amplitude that is large if ωD is
close to ω.

← COMMENTARY
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[C] Drawing energy out: damping

• Consider a simple harmonic os-
cillator of natural frequency ω
subjected to a damping force pro-
portional to the instantaneous
velocity, and in the opposite di-
rection to it:

Fdamping = −bẋ (6.11)

where b is a damping constant

• The figure shows one example

. . . but there are many others.

MECHANISM
DAMPING

← EXAMPLES

• The equation of motion:
mẍ = −kx − bẋ

• The resulting behaviour: x ex-
hibits SHM close to the natural
frequency ω but with an ampli-
tude that decays exponentially
with time

xm(t) = xm(0)e−γt/2 (6.12)

where γ ≡ b/m
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← COMMENTARY

[D] Energy balance: damping and driving

• Now we consider what happens in a system in which we have both driving (as in
Equation 6.9 ) and damping (as in Equation 6.11.)

• The equation of motion:

mẍ = −kx + FD cos(ωDt) − bẋ

• The resulting behaviour:
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x exhbits SHM

• at the frequency ωD (not ω)

• with a phase that is different
from that of the driving force

• with an amplitude that is large,
but not infinite at resonance.

0.0 0.5 1.0 1.5 2.0
 ωD 
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0.0

x m

INCREASING
DAMPING

← COMMENTARY

← M

Learning Resources

• Textbook: HRW 15.8-15.9

• Self-Test Questions: available on–line

• Course Questions: Damping, Resonance: the downside.

S6.7 Chaos

This section is included for general interest. It is not part of the examinable programme
of the course.


