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Welcome 
 

Welcome to session 8. In this session we’re going to look at how electricity and magnetism 

can be unified into a system of equations, named after James Clerk Maxwell, the Scottish 

physicist who first proposed them. Then we’ll see how this leads to an understanding of the 

nature of electromagnetic radiation. 

 

Session Authors 
 

Derek Raine & Emma Bunce, University of Leicester. 

 

Session Editor – Tim Puchtler 
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Learning Objectives 
 

 Explain how Maxwell’s theory leads to electromagnetic waves   

 Show a knowledge of the Poynting vector and electromagnetic energy 

 Describe the states of polarisation of an electromagnetic wave 

 Describe how reflection and refraction are accounted for by the wave theory  

 Give an account of reflection and refraction at a plane boundary including 

Snell’s law  
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The Problem 
 

The problem involves the search for leaks in water pipes crossing desert areas. Visual 

human inspection is costly and inefficient. The problem with using satellite or aircraft 

images is in interpreting the shadows which can be due to many other things than leaking 

pipes. The idea to be investigated is whether this can be solved by using robotic vehicles to 

look for changes in refractive index in wet sand. At this stage of the investigation we are not 

interested in the practicalities of the robotics, only in the theoretical considerations of the 

interaction of electromagnetic radiation with wet and dry sand.  

 

Image1 

In order to solve the problem it’s clear that we need to know what is meant by a refractive 

index and how that can affect the behaviour of electromagnetic waves at a surface. To study 

this we’ll have to start by understanding electromagnetic waves and to investigate their 

properties we’ll need a mathematical treatment.   

  

                                                           
1
 Pipeline, Andrewcparnell, as poster on www.flickr.com. Creative Commons Licenced. 
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Electromagnetic Waves 
 

Maxwell’s Equations 
 

The key insight into the relationship between light and oscillations of the electromagnetic 

field was obtained by Maxwell. The insight involves returning to Ampere’s law in a special 

circumstance, namely a simple circuit consisting of a long wire through which charge is 

flowing into a capacitor.   

 

Recall that Ampere’s law says that the circulation of the magnetic field is the enclosed 

current – up to a constant factor that depends on the units. We’ve drawn two surfaces 

through which to calculate the current. As the capacitor charges up the current through the 

blue surface will be non-zero. On the other hand the current through the red surface that 

threads the capacitor appears to be zero. This would violate Amperes law.  

 

To restore the law Maxwell modified it to include the field that flows between the capacitor 

plates as the charge on the plates builds up.  We get the exact expression by using Gauss’s 

theorem to relate the charge on the plates to the flux of the electric field E: Recall that 

Gauss’s theorem says that, up to a constant, the flux of the electric field through a closed 

surface equals the enclosed charge. So the rate of change of flux will equal the rate of change 

of charge; that is the current. In equation (1) we’ve therefore replaced the current in 

Ampere’s law by the rate of change of electric flux. In this form the law will be valid for 

surfaces such as the red surface.  
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In order that Ampere’s law remains valid under all circumstances we allow both the real 

currents and the electric flux to contribute to the magnetic circulation. Ampere’s law 

becomes: The Circulation of the magnetic field B = the Current + the Rate of change of the 

Flux of the electric field E. Because the rate of change of the flux of the electric field acts as a 

current in Ampere’s law, it is called the displacement current.  

 

 

Derivation of Maxwell’s Equations 
 

To get Maxwell’s equations we’ll look at a special case. In this special situation we have an 

electric field with only an x-component Ex – the y and z components of E are set to be zero. 

In addition we’ll assume that Ex doesn’t depend on where in the xy plane it is measured: 

we’ll assume it’s always the same. In other words Ex doesn’t depend on x or y. But we do let 

it depend on the z coordinate. We also let it change in time. So in this situation Ex is assumed 

to be a function of z and t. We’ll see why this is a good thing to do in a moment. How should 

we simplify the magnetic B field? By trial and error we find that a useful assumption is that 

B has only a y component, By, and that this also depends only on z and the time, t.  

 

We’re now ready to write down Faraday’s law for a small square in the yz plane and 

Ampere’s law for a small square in the xz plane. Why do we choose these planes? Because 

for Ampere’s law we want the flux of the E field so we choose a surface perpendicular to Ex 

and for Faraday’s law of induction we want the flux of the B field, so we choose a surface 

perpendicular to By.  

We’re now in a position to derive Maxwell’s equations for this case. 
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Application to Electromagnetic Fields 
 

Where have we got to? – We have a system of equations for the electric and magnetic fields 

in a particular situation.  

 

But what does all this mean? 

Look at the equations. Equation (1) says that a time varying B field, of the right form, 

generates an E field. This is just Faraday’s law of induction.  Equation (2) says that the E 

field regenerates the B field. Why? Because the E-field is acting as a current in Ampere’s law.  

This is still not a particularly intuitive picture.  So we’ll take the maths a bit further. We’re 

now going to derive the most important consequence of Maxwell’s equations, from which 

we’ll see that what we’ve been talking about are in fact electromagnetic waves.  

We can derive the equation governing wave motion that we met in session 3 by 

manipulating equations (1) and (2). We begin by differentiating (2) with respect to t and then 

substitute for dB/dt from equation (1).  
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You may recognise the resulting equation (3) – apart from the use of Ex instead of y as the 

dependent variable, and the use of z instead of x as the coordinate describing the spatial 

dependence, this is, what we called in section 3, the wave equation.   

 

The speed of propagation of the wave is 1/ 0 0 which is numerically very close to the speed 

of light. Since there is nothing that has a speed close to that of light that isn’t in fact light, we 

take it that these equations describe light in terms of time-varying electric and magnetic 

fields.  

Work out ( 0 0)
-1/2 

Starting from (1) derive the wave equation for By 

 

Checking solutions 
 

As a check we can show that this equation has a wave-like solution. We let the electric field 

Ex have the usual form of a harmonic wave in equation (1) and compute the second 

derivatives with respect to z and t as shown.  

 

The wave equation specifies how the second derivatives are related. We can check that the 

required relation in equation (3) of the previous section will be satisfied if  and k are 

related as in equation (2) where we’ve put c for the speed of light. 
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The wave equation for the magnetic field B will be satisfied by a similar harmonic wave. But 

what is the relation between the phases of B and E? Let’s see.  

 

Relation between E and B 
 

To get the relation between E and B we go back to Maxwell’s equations.  

 

We’ll guess the relation and then check it. We’ve guess that if E is proportional to cos( t-kz) 

then so is B. We’ve checked the first of Maxwell’s equations below and found that the 

amplitude of the magnetic oscillation is 1/c times smaller than the electric component. This is 

just what we might expect from our investigation of the Biot Savart law is session 5. We’ll 

leave you to check the second Maxwell equation.  

 

Our second conclusion from this calculation is that E and B are IN PHASE. A propagating 

electromagnetic wave therefore looks like the illustration in the figure, with E and B 

oscillating together. 
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The Electromagnetic Spectrum 
 

The waves we are talking about here are called plane waves because the fields are constant 

on xy planes. We can think of the xy planes as forming the wavefronts progressing in the z 

direction as shown here: 

 

The parameters k and  can take any values so long as /k = c, the speed of light. So the 

wavelength of the waves can range from as large as you please to as small as you please. 

Thus, Maxwell’s equations describe the whole electromagnetic spectrum from radio waves 

to gamma rays: they are all oscillations of the electric and magnetic fields. 

 

Polarisation 
 

Electromagnetic waves come in more complex forms than the simple infinite plane waves 

that we have described so far. We’re not going to take that any further here. But there is one 

complication we’ll need – the polarisation of the wave.  

So far we’ve considered an E field in the x direction and a B field in the y direction. Suppose 

we swap the two to get an E field in the y direction and a B field in the x direction. This is 

obviously a solution of Maxwell’s equations because we can assign the x and y labels for the 

axes as we like. We describe the difference between the two waves by saying that they 

exhibit different states of linear polarisation. The convention is that the direction of the E 

field is used to describe the polarisation state – hence that E field (and the polarisation) can 

be vertical or horizontal.  
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Recall that the E field isn’t static – this is a wave, so at any point the E field is oscillating in 

amplitude with time. We can add two waves with the E fields at right angles, and with a 900 

phase difference, to get a polarisation vector that rotates. In this case we say that the wave is 

left or right circularly polarised.   

 

You’ve probably some experience of polarisation – for example, sun glasses are polaroids. So 

you know that the interaction of light with a material can depend on its polarisation. This 

could be helpful to us in the problem of identifying wet sand, but we first need to 

understand the interaction of radiation with materials. We’ll take that up in the next section.  

Show how two orthogonal E vectors can be added to 

produce a right circularly polarised wave. 

 

Summary 
 

 Ampere’s law must be modified to take account of the “displacement current” that 

arises from a time-varying electric field, in addition to real currents.  

 When this is done, it is possible for time varying electric and magnetic fields to 

generate each other in a vacuum 

 This gives rise to electromagnetic waves which we identify as moving with the speed 

of light  

 Therefore light waves are oscillating electric and magnetic fields 

 The direction of the E-vector defines the state of polarisation of the wave 
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SAQs 
 

1. If Ex =E0sin ( t –kx), By =  

a) (E0/c) sin ( t –kx) 

b) (E0/c) cos ( t –kx) 

c)  - (E0/c) sin ( t –kx) 

d) d) - (E0/c) cos ( t –kx) 

 

2. Which of the following is the correct picture of a propagating electromagnetic wave? 

 

 

The answers appear on the following page 

  



15 
 

Answers 
 

1.  (a) correct: B and E are in phase so if E is a sine wave, so is B.  

(b) incorrect: If E is a cosine wave as in the text, then so is B, but here E is a sine wave, 

so B must be a sine wave too to be in phase.  

(c) incorrect: the minus sign corresponds to a 900 phase difference between E and B 

which is not present.  

(d) incorrect: the minus sign and the cosine wave would put E and B out of phase 

 

2.  (a) correct: This is the same question as 1, but in pictures.  

(b) Incorrect: This is the same question as 1, but in pictures: E and B are in phase.  
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Fields at Boundaries 
 

Waves in Media 
 

The wave picture on the left shows plane waves incident normally from a vacuum on to a 

transparent medium. The frequency of the wave is unchanged as it propagates from one 

medium to the other. The wavelength does change – it is smaller in the medium with higher 

refractive index. On the right, we have drawn in the normals to the wavefronts. This gives 

us the ray picture of geometrical optics. We can use the ray representation in situations 

where there are no wavelike effects - that is, where the light is travelling in straight lines.  

 

 

The speed of the light is lower in a medium than in a vacuum. This commonly raises a 

number of issues. 

First does the light change colour from one medium to the next? If not, why not? We’ll leave 

you to discuss this. 

Second, in the wave picture the light slows down instantaneously on entering the medium – 

in the photon picture do photons undergo infinite deceleration at the boundary? In fact, they 

do not. The photons entering the medium interact with it and lose their identity. The 
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particles propagating in the medium are different photons – we’ll see this in more detail on 

the next section. 

 

Dielectric constant  and refractive index n  
 

What causes the slowing down of light in a dense medium? We can represent the medium 

as a collection of atomic dipoles which oscillate in the presence of an electric or magnetic 

field. This oscillation contributes to the electromagnetic field in the medium, altering it from 

the incident field. Consider an oscillating electric dipole. The movement of charge 

constitutes a current in the medium. This current is only present because of the original 

oscillating electric field. So, for small fields at least, we can assume that the current depends 

linearly on the field. We can also assume that it depends on the time derivative of the field, 

because the dipoles won’t oscillate if the field is not varying.  Thus, in a medium, we must 

modify Maxwell’s equations by the extra term in equation (2) here. In this equation  is a 

constant relating the induced currents to the field. If you work through the maths you’ll see 

that a wavelike solution for Ex now requires that equation (3) is fulfilled.  The constant 

quantity  is the dielectric constant which we met previously in session 4. 

 

The refractive index of a medium, n is defined by n = ck/ . It is equal to the square root of 

the dielectric constant. The refractive index is also the speed of light in a vacuum, c, divided 

by the speed of light in the medium, /k. Equivalently, the speed of light in the medium, 

/k, equals c/n. Since refractive indices are greater than unity, this explains why light moves 

more slowly in a medium.  
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Why would you expect the refractive index to depend 

on  frequency? (Hint: think back to session 3) 

 

Think about why you might expect the refractive index of a medium to be a function of the 

frequency of the incident light. …. 

The reason can be found in the work of session 3: the way an oscillator responds to an 

oscillating external force depends on the frequency of the oscillation. So the currents 

induced in the dielectric by the incident field will depend on its frequency. This means that  

and hence n must be frequency dependent.   

 

Reflection and transmission – normal incidence  
 

We can now look at a wave incident on a dielectric, non-conducting, medium. We’ll 

consider the magnetic field component – the electric field would give identical results. Using 

our experience that an incident wave will be partly reflected and partly transmitted, we now 

have three waves to consider: the incident wave, the reflected wave and the transmitted 

wave.  

 )cos(    );cos(    );cos( transrefinc zωt -kBBzktBBzktBB ttrrii
 

We’ve used the subscripts i, r and t for the amplitudes of these waves and for their wave 

vectors k. Note that the incident and transmitted waves are travelling in the positive z 

direction, but the reflected wave is travelling in the opposite direction : hence the argument 

t + kz of the cosine function, with the opposite sign for k. We’ll assume for simplicity that 

the incident medium is air with a refractive index of 1. 

Now, we have to satisfy the wave equation on the boundary, because the laws of 

electromagnetism are supposed to hold everywhere. So we’ll need to find the second 

derivative of B. That means that on whichever side of the boundary we calculate it we must 

get the same answer. Thus, dB/dz must be the same on both sides of the boundary, and B 

itself must be too. On the incident side the total B field is made up of the sum of the incident 

and reflected wave. So the derivative of this sum must equal the derivative of the field on 

the transmission side on the boundary at z=0. This leads to equation (1). Similarly the total 

field must be the same on both sides the boundary at z=0. This leads to equation (2). 
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Equations (1) and (2) can be solved for the reflected field and the transmitted field in terms 

of the incident field. The ratio of the field transmitted to that reflected depends on the 

refractive index. 

 

However, we don’t normally measure radiation fields directly – we usually measure the 

energy flow. So how do we convert fields to energy fluxes?   
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Energy Carried by a wave 
 

Just as in session 3, the energy of a wave depends on the square of the amplitude. For the 

electric and magnetic fields we’ve met the expressions for the energy densities in previous 

sessions. The energy per unit volume is given by equation (1). To get the flux of energy we 

multiply this by the speed of the wave.  We saw in the section relating the dielectric constant 

to the refractive index that this is c/n in a medium of refractive index n. So we’re now in a 

position to give the reflected and transmitted energies when a beam of radiation strikes a 

dielectric. 

 

 

 

 

Show that T + R =1. What does this equation mean 

physically? 
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How far do waves penetrate a conductor?  
 

So far we have considered waves incident on perfectly insulating media, that is we have 

neglected the effects of conductivity. In a real medium any incident radiation will not only 

shake the atomic dipoles but will also move free charges around. The motion of free charge 

also constitutes a current that will add to the field. We know that a static field inside a 

conductor is zero, because the charges move to neutralise any field. If the charges respond to 

a time varying field entirely without resistance then they will instantaneously neutralise a 

time varying field inside the conductor as well. However, if the conductivity is finite, 

conduction currents will flow under the influence of the electric vector of the wave. This 

current will dissipate energy through ohmic heating, so the wave will lose energy as it 

propagates. The distance over which the amplitude of the E vector falls to 1/e of its initial 

value is called the skin depth. The skin depth is given by equation (1).  

 

Why is this relevant to our problem of detecting leaking pipes? – From this point of view, 

water is a conductor. Thus if em radiation penetrates wet sand it may be reflected not from 

the sand surface, but from buried objects – such as the water pipe itself!    

At low frequencies, for example for radio waves, the skin depth of a wave of frequency  in 

a medium of conductivity  is given by equation (1). In a good conductor the skin depth is 

quite small. In copper for example the skin depth is about 1/100 th of a mm.  

Example: a copper conductor    

                  = 5.76 x 107 ohm-1  metre-1         

    0 = 8.85 x 10-12  farad metre-1          

    c = 3 x 108 m s-1    

      = 2  x 1010  rad s-1     (microwaves) 

Then:   = 7 x 10-6  m  

  



22 
 

 

Summary 
 

 Waves in a medium with refractive index n travel at speed c/n  

 The refractive index is the square root of the dielectric constant and depends on 

frequency 

 The energy in the electromagnetic field is: 
0

2

2
12

02
1

B
E  

 The ratio of transmitted energy to reflected energy depends on n  

 The energy travels at speed c/n in a medium  

 Waves penetrate into a conductor a distance given by the skin depth: 
2

02 c
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SAQs 
 

1. Why is it difficult to send high frequency electromagnetic waves down copper wires? 

a) The electrons move too slowly 

b) The resonance width is too low 

c) High dissipation leads to confinement of the field 

d) The signal is totally internally reflected 

 

2. Why is the skin depth for water different from a copper conductor? 

a) Water is a poor conductor 

b) Water is transparent 

c) Because the dielectric constant of water is larger   

 

3. Communication with submarines from a base station on land (using the 

electromagnetic spectrum) requires 

a) High frequency radiation 

b) Low frequency radiation 

c) High power at any frequency  

 

4. For normal incidence the polarisation of the reflected wave is: 

a) the same as that of the incident wave 

b)  900 to the incident wave 

c)  random (i.e always unpolarised)  

 

 

The answers appear on the following page 
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Answers 
 

1. a)Incorrect: the signal is not carried by translational motion of electrons, but by 

oscillations communicated at speed c/n  

b) Incorrect: the conduction electrons in a metal are free so the resonance frequency 

and width are irrelevant 

c) correct: the conductivity of copper is high, so the electric vector gives rise to large 

currents and hence large I2R losses. Fields do not therefore penetrate very far so the 

skin depth in a metal is very small. Thus electromagnetic waves are confined to the 

surface layer.  

d) incorrect: it would be relevant if one were to try to shine a beam down the copper 

wire, because copper like all metals is a good reflector as a consequence of the small 

skin depth. However, the signal would be generated electromagnetically in the wire.  

 

2. a) correct: the formula for skin depth involves the conductivity in the denominator so 

high conductivity implies small skin depth. This is also physically reasonable 

because the high conductivity implies large currents, hence large I2R losses and small 

penetration. 

b) incorrect: water is transparent to optical wavelengths because the skin depth at 

these wavelengths is large, not the other way round.  

c) the statement is true but not relevant because the dielectric constant doesn’t affect 

the skin depth.  

 

3. a) incorrect: this is another skin depth problem since the em waves have to penetrate 

the ocean.  

b) correct: only the lowest frequencies can penetrate to depth in sea water (which has 

a relatively high conductivity compared to tap water, say. Pure water is non-

conducting.) 

c) incorrect: the signal fall off exponentially with distance so while high power might 

have some effect it’s not sufficient on its own 

 

4. a) correct: the E and B fields each have to be continuous across the boundary which 

means that they each have to align independently 

b) and c) incorrect: a wave may be polarised on reflection by selective polarisation-

dependent reflectivity but the polarisation of an individual wave doesn’t change on 

reflection.   
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Reflection and Refraction 
 

Oblique Incidence 
 

The first observation we usually encounter in discussing reflection is the equality of the 

angles of incidence and reflection. Why are these equal?  

 

We can think of the wave vector k which gives the direction and wavenumber (or 

wavelength) of the wave as having components parallel to the surface and perpendicular to 

it. Let’s take the example of a perfect conductor. The reflected and transmitted waves have 

to cancel along the surface, so  k// must be the same for the incident and reflected waves. But 

the wave numbers of the reflected and incident waves are also the same in the same 

medium. So k  must be the same for both.  This means the angles are the same.  
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Where does Snell’s Law come from? 
 

Turning now to refraction, where does Snell’s law come from?  

n1 sin i = nt sin t (Snell’s Law)  

 

 

Once again, k// must be the same for all waves in order that they cancel along the surface. But 

k/n is the same in both media, because this is how n is defined. Now, k/n is k///(nsin ) where 

 is the angle of incidence, reflection or refraction. Thus we get Snells law: ni sini = nt sin t. 
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The Brewster Angle 
 

An interesting effect occurs for an incident beam polarised such that the electric field is in 

the plane of incidence – that is the plane containing the incident ray and the normal to the 

surface, or the plane of the page as it is usually drawn. The effect is this: at a particular angle 

of incidence there is no reflected ray.  

 

Brewster angle: I = tan-1(nt / ni) 

 

This can be understood by recalling that reflection occurs because the dipoles in the medium 

are made to oscillate by the incoming field. The oscillating dipoles produce their own 

radiation field which contributes the whole of the reflected field and part of the transmitted 

field. But a dipole does not radiate along its axis. Thus if the transmitted ray is at 900 to 

where the reflected ray would have been, there will be no reflected ray. This occurs at an 

angle of incidence called the Brewster angle which depends on the refractive indices of the 

two media.  
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Poynting vector  
 

Finally we come to another way of looking at the flux of energy which gives us both the 

direction and magnitude of the energy flow in a field. This is called the Poynting vector. This 

section shows how it is derived for a plane wave. We start from the usual expression for the 

energy per unit volume of an electromagnetic field in equation (1). We take the time 

derivative of the energy in equation (2). We then use Maxwell’s equations for a plane wave 

to eliminate the time derivatives to get equation (3) which is rewritten as (4). This gives us 

the difference in energy entering and leaving a planar region along the z-axis in terms of the 

rate of change of energy in the region. 

α 

Reflected 

Intensity 

100% 

0% 

Angle 
00 900 

Brewster Angle 
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In equation (5) we have given a general expression for the Poynting vector, S, that applies to 

any situation, not just plane waves.  

 

Summary 
 

For oblique incidence: 

 The angle of reflection equals the angle of incidence 

 The angle of refraction t obeys Snell’s law: tnin ti sinsin  

 For the electric vector polarised in the plane of incidence there is no reflected ray at 

the Brewster angle tan-1 (ni/nt)  

 The Poynting vector E x B/ 0  gives the energy flux in a wave.  

  



30 
 

 

SAQs 
 

1. Unpolarised light is reflected obliquely from a plane surface. What is the state of 

polarisation of the reflected beam? 

a) unpolarised  

b) E vector parallel to the plane 

c) partly polarized 

 

2. In passing from glass to air a light ray bends 

a) away from the normal  

b) towards the normal  

c) Neither: it is totally reflected 

 

The answers appear on the following page 
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Answers 
 

1. a) incorrect: the different components of polarisation are reflected more or less 

strongly so there will be a net polarisation in the reflected beam even if the incident 

beam is unpolarised.  

b) incorrect: this would be true at the Brewster angle and is a way of producing 

linearly polarised light. 

c) correct: the different components of polarisation are reflected more or less strongly 

so there will be a net polarisation in the reflected beam even if the incident beam is 

unpolarised.  

 

2. a) correct: the easiest way to see this is to trace a ray backwards. The paths are time-

reversible because there is no dissipation in geometrical optics (i.e for non-

conducting dielectrics or perfectly conducting mirrors). 

b) incorrect: the wave is travelling faster in air than in glass, so the bending is away 

from the normal. 

c) incorrect: at a large enough angle of incidence this will be true, but it is not the case 

for small angles of incidence.   
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Water Pipes in the Desert 
 

What method might we use to determine the difference in refractive index between wet and 

dry sand? : 

Reflection coefficient 

Brewster angle 

 

Look up the dielectric constant of water and predict 

the difference in Brewster angle between wet and dry 

sand. Why might microwaves be better than optical? 

 

Sand has a refractive index of around 2 to 3. If you look up the dielectric constant of water 

you’ll find a range of values because it is highly dependent on the frequency of radiation. 

Typical values for the dielectric constant in the microwave region are around 80, whereas 

the refractive index in the optical we know to be around 1.3, which is far from the square 

root of 80. This suggests that we might get a larger difference between wet and dry sand if 

we use microwaves in our detection system.     

 

Results for Sand 
 

So here we have some results for the reflection of polarised microwaves from sand. The first 

thing you will notice is that the curve does not look much like the theoretical curve where 

we discussed the Brewster angle. Before we attempt to use the method therefore we should 

try to understand where the discrepancies arise. They are not just experimental error 

(although the experiment is quite difficult to do accurately).  
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Theoretical Curve: 
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We suggest that you come up with your own ideas on this. 
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Additional Problems 
 

Problem 1: Solar sails 

 

A solar sail is a means of powering a spacecraft that works by capturing the momentum of 

radiation from the Sun.  

Momentum and energy: the flux of momentum P carried by a beam of light is related to its 

energy flux E by P=E/c.  

 

Image2 

Estimate the acceleration of a solar sail at the Earth and comment on your result. (Your 

answer will depend on the size you assume for your sail.) 

Flux of momentum from Sun = L/(4 r2 c);  

Force = rate of change of momentum= 2x Area x L/(4 r2 c) 

Acceleration = Force /Mass 

 

                                                           
2
 Solar Sail in Orbiter, FlyingSinger, as posted on www.flickr.com. Creative Commons Licenced 
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Answer: We make the acceleration about 5x10-8 m s-2  for a sail with area 1000m 2 and a 

spacecraft of mass 100 tonnes. Don’t forget the factor 2 for the momentum change on 

reflection. You might like to think about where the energy comes from that ends up as 

kinetic energy of the spacecraft. Any practical accelerations are likely to be small, but the 

method is interesting because it can be used to accelerate a spacecraft over long periods 

thereby building up significant speeds.    
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Overall Summary 
 

 Maxwell’s equations arise from a modification of Ampere’s law to include the 

displacement current 

 Maxwell’s equations predict the existence of electromagnetic waves travelling with 

the speed of light 

 The waves are transverse with the electric and magnetic fields orthogonal and 

perpendicular to the direction of motion 

 The speed of an electromagnetic wave in a medium of refractive index n is c/n.  

 Maxwell’s equations can be used to derive the laws of reflection and of refraction 

 At the Brewster angle a wave polarised parallel to the plane of incidence is not 

reflected   

 The Poynting vector gives the energy flux in a wave 
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