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The analytical process model – revision slide

Any analysis may be considered as consisting of a maximum of seven unit 

processes.  These are shown diagrammatically and descriptively below:

1 2 3 4 5 6 7

Unit 1. Consider the problem and decide on the objectives

Unit 2. Select procedure to achieve objectives

Unit 3. Sampling

Unit 4. Sample preparation

Unit 5. Separation and/or concentration

Unit 6. Measurement of target analytes

Unit 7. Evaluation of the data, have the objectives been met?
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Process unit 7

1 2 3 4 5 6 7

In using the process model to define analysis, units 1 & 2 have been shown to be

preliminary steps – deciding on the objectives for carrying out the analysis, and

the methods to be employed in order to achieve the objectives.  Units 3 – 6 were

the practical stages of sampling, preparing the sample for analysis and making

analytical measurements.  The final stage involves:

 An evaluation of the data obtained, by application of statistical tests;

 An indication of the accuracy of the result through an estimation of measurement

uncertainty;

 A decision as to whether the analysis carried out and the results obtained have

satisfied the objectives set out in unit 1.  If these have not been achieved, 

then a decision is required on what further work needs to be carried out.
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Evaluation of data using statistical 

methodologies
This initial part of process unit 7 will focus on the handling of data that has 

resulted from  quantitative analytical measurement.  The analytical process was 

designed to produce data that represents the amount or concentration of an 

analyte in a sample, the sample being representative of the bulk.  Therefore the 

final result should reflect the amount or concentration of the analyte in the 

bulk. 

The values resulting from the data analysis step, should be reported 

appropriately with a certain level of confidence.  The result is even more useful if 

there is some estimation of the uncertainty associated with the measurement.

How the data is reported, e.g. the number of significant figures, and the units, 

all contribute to the usefulness of the result.

In order to perform statistical calculations, the use of a hand held scientific 

calculator such as Casio or Sharp, and a spreadsheet such as Microsoft Excel will be 

useful. 
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Mean and standard deviation

 When the sample is taken to the lab it is divided up into test portions and 

thus only a small portion of the sample received by the laboratory is actually 

analysed.  

 Multiple measurements or replicates are taken and a value for each of these 

is recorded.  The mean (x ) of these values estimates the true value ().  

The „true‟ value may never be known, as there is always an element of 

uncertainty associated with the result.  

 To obtain the result of the analysis, the sample may have been spiked with 

a known amount of analyte.  A certified reference material (CRM) may 

have been used, or a consensus true value may have been agreed by a 

number of accredited laboratories.

 The standard deviation represents the spread of the data - it is an 

estimate of precision.  Precision is a measure of random variation 

associated with a measurement or instrument.  Where the uncertainty is 

systematic, we can say there is a bias in the results.
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Calculating mean and standard 

deviation
The mean and standard deviation in analytical science are associated with

samples.  Where the entire population has been measured we refer to the

mean and standard deviation as „‟ and „‟ respectively.

However when a sample (rather than the entire population) has been 

measured, we refer to the mean and standard deviation as „ x ‟ and „s‟.

 If each measurement is represented by „xi‟, and there are „n‟ measurements, 

the mean is calculated by [note that the term „∑‟ represents „the sum of‟‟]:

(∑xi) / n Equation (5.1)

 and s by:

√[∑(xi  - x )
2
/ (n-1)] Equation (5.2)

As hand-held calculators are readily available, it is advisable to learn to use the

SD mode and use this to obtain the sample standard deviation.  Of the two

values offered, the sample standard deviation is often represented as n-1.  

If in doubt this will be the larger of the two values.
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Relative standard deviation and 

variance
Using standard deviation in isolation is not a useful measure of precision. For

instance where the mean values for the analysis of a sample performed by

two procedures are different, it can be difficult to estimate which procedure

offers the better precision. To get a more meaningful result, it is preferable to

relate the mean to the standard deviation to produce relative standard deviation 

(RSD) – equation (5.3)

s /  x  Equation (5.3)

There are cases, such as repeated measurements of peak height in a

chromatographic analysis, where „s‟ can give a measure of an instrument‟s 

performance.  The RSD may then be expressed as a percentage and is referred 

to as the coefficient of variation (CV) – equation (5.4):

100 x (s /  x ) Equation (5.4)

Variance (s
2
) is a statistical term used to evaluate measurement uncertainty

and later to compare precisions. 

Continued on the next slide
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Standard deviation can also be expressed as the standard deviation of the 

mean (SDM) – equation (5.5):

s/√n Equation (5.5)

As more data is collected, the standard deviation of the means becomes 

smaller - proportional to n.  This is a measure of dispersion of the means.  

It is also the correct way to express standard uncertainty (see later).

Table (5.1) below summarises the statistical terms introduced so far.

Table (5.1)

statistical

terms
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Example (5.i)

Seven replicate samples of a prepared food were analysed for fat content.  The results

obtained were:  3.080, 3.094, 3.107, 3.056, 3.112, 3.174 & 3.198 % w/w.  Calculate the

standard deviation (s) and coefficient of variation (CV), of this set of data.

s = √[∑(xi -x )
2
/(n-1)]  and RSD = s/x X 100 %

s   = √0.01544 / 6

=  √0.00257

=  0.051

CV = (0.051/3.117) X 100

= 1.63 %



1111

Example (5.ii) – statistical calculations associated with the weighing of 7 tablets from a single batch

Weighing, or measuring mass is a common procedure in any analytical laboratory.  Using a „4-figure‟

analytical balance, which has been previously calibrated, a sample of seven tablets were weighed.  The

following data represent the weight of the individual tablets:

Xi : 555.1mg, 556.2mg, 554.8mg, 557.1mg, 556.5mg, 554.7mg and 556.2mg.

Note: There are two sources of variation, the actual variation in the mass of the tablets, and the  

uncertainty associated with the measurement process.  Typical total (expanded) uncertainty for a 

4-figure analytical balance is + 0.0004g.  Nominal accuracy is 0.0001g (0.01%).

Calculate: x, s, RSD, CV, SDM and variance for the sample of tablets

x =    3890.6/7  =  555.8 mg

s =    √ (5.2/6)  =  0.93 mg

RSD =  0.93/555.8  =  0.0017

CV =  RSD X 100  =  0.17

SDM =  0.93/√7  = 0.93/2.64  =  0.35

Variance =  0.93
2

=  0.87

Note: If the number of tablets taken had been large enough to constitute a „population‟ (50+), then the

standard deviation would be represented by „‟ to give a value of 0.86 mg [(n – 1) replaced by „n‟]
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Confidence limits
 In all analytical measurements there is only one „true‟ answer , and all 

values obtained are spread around this value.  In the absence of any bias, or 

systematic error, the values, xi, will be randomly clustered around .  If xi

,on the „x‟ axis, is plotted against the frequency of its occurrence, on the „y‟ 

axis,  a normal or Gaussian distribution is obtained as shown in figure (5.1 )

 The reason for making replicate measurements is to estimate, with the 

highest degree of confidence possible, the „true‟ answer.  As has been 

shown, the more measurements made the „better‟ or more reliable the 

answer.  As the frequency plot, or histogram, is prepared, and more data is 

plotted the curve „smoothes out‟ 

to its final bell shape – see

figure (5.1) 

Figure 5.1 – typical

statistical histogram
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Confidence
A degree of confidence implies a degree of probability. Confidence limits define 

a range within which one may reasonably assume the true value lies.  This 

assumes random variation only. The probability that the true value lies within the 

range defined can be expressed as a %.

Where there is a normal distribution of data and an infinite number of 

measurements, 68.3% of the values lie between + 1 standard deviation, 95.4% 

between + 2 standard deviations and 99.7% between + 3standard deviations.

In a realistic analytical experiment, only a small number of measurements are 

made, the confidence limits can be described by:

[ x + tn-1 s/√n ] Equation (5.6)

Where (n-1) refers to degrees of freedom (), the number of independent 

deviations used to calculate s. For every mean calculated, the number of 

degrees of freedom is reduced by 1.  The value of „t‟ (see next slide), also

depends on the level of confidence required. For a large sample size at an 

confidence of 95%, „t‟ is close to 2 (1.96), for smaller sample sizes, the value of 

„t‟ may be obtained from „t test tables‟. 

In other words 95% of sample means lie between  + 1.96 /√n.
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„t‟-tables

 The confidence limits are the product of the standard deviation of the mean, 

s/√n and „t‟.

 As the level of confidence increases, so does „t‟, widening the range in which 

it is probable that the true value lies.

 As „n‟ increases, both „t‟ and s/√n decrease.  The more measurements made 

the more confident the analyst is that the range defined will include the true 

value.  

 „t‟ tables or Students-t distribution is mathematically defined by a probability 

density function beyond the scope of this unit.  The data is tabulated in a form 

convenient for analysts using relatively small (<30) samples.
A ‘t’ table can be found in most textbooks of Analytical Chemistry and on the 
following website: http://en.wikipedia.org/wiki/Student%27s_t-distribution

C:/../Users/Brian/Desktop/OER modified/Chapter 5
C:/../Users/Brian/Desktop/OER modified/Chapter 5
C:/../Users/Brian/Desktop/OER modified/Chapter 5
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Example (5.iii) - on the use of the ‘t’ tables

The data previously given in example (xx) will be used:

Xi : 555.1 mg, 556.2 mg, 554.8 mg, 557.1 mg, 556.5 mg, 554.7 mg and 556.2 mg.

x =  555.8 mg

n = 7

s = 0.93

 = 6 (n-1)

t, at 95% confidence = 2.447

By using the formula:  [ t.s/√n ], we can now calculate the interval surrounding the

mean value, where we are 95% confident that the true mean will lie: 

[ 2.447 X 0.93/2.65]  = 0.86

Thus, the confidence limits at 95% are expressed: 555.8 + 0.86 mg

The analyst is 95% certain, that the true value lies in the range 556.7 to 554.9 mg.

Confidence limits can also test for bias, or systematic error.
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Outliers
An outlier refers to any piece of data that appears to be outside the normal data

set.  At the outset it may be so different as to be obvious that it does not fit with 

the other data points in the set.  However there are occasions when this

conclusion is less obvious.  Under these circumstances, it is necessary to apply

an approved statistical test, such as the Dixon‟s Q test which is considered on the 

next slide. 

When collecting raw data, it is up to the analyst to ensure the integrity of that data. 

This is usually achieved by recording the data, in ink, carefully in a lab notebook, 

or attaching the read-out from an instrument. Once this data is recorded it must 

never be erased or obscured. Data initially recorded incorrectly is simply scored 

through and the replacement data entered. In accredited laboratories, or with the 

use of automated data collection, data cannot be changed without applying an 

agreed protocol.

Once collected, data should not be discarded without good reason.  Often a note

is made in the notebook explaining the reason for changing data, e.g. it may have

been transposed, or the analyst may have been interrupted.  If an error was made

during the analysis, e.g. an overfilled flask, then the measurement should have

been abandoned and the data not collected in the first place.
Continued on the next slide
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Once recorded, any piece of data that appears to be outside the normal

data set, should be tested to see if it is an outlier, and if so, then 

removed and the reason for removal stated in the lab notebook.

It is good practise to append all calculations and keep any rejected 

values in the data set, but with an explanation as to why they are not

included in the data analysis.
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Dixons Q test

 A simple test for outliers is the Dixons Q test.  Once identified the suspect 

point is tested:

 Qcalc = [suspect value - nearest value]/[largest value - smallest value]

[equation (5.7)]

 Note all values are included until they are formally rejected.

 The calculated statistic, is then compared to a published critical value, see 

Table (5.2) on the next slide.  If the calculated value is greater than the critical 

value then the data point is rejected, and no longer included in the data 

analysis.

 There are situations where more than one test of an outlier (e.g. Grubbs test) 

should be applied, but Dixons Q test is sufficient for most applications.



Number of values: 3 4 5 6 7 8 9 10

Q90%: 0.941 0.765 0.642 0.560 0.507 0.468 0.437 0.412

Q95%: 0.970 0.829 0.710 0.625 0.568 0.526 0.493 0.466

Q99%: 0.994 0.926 0.821 0.740 0.680 0.634 0.598 0.568

Table 5.2 – critical values of Q at 3 confidence levels
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Example (5.iv) – use of the Dixon’s test for outliers

In an experiment to determine the concentration of glucose in a sample the following

data were obtained:

Xi : 0.48 mM, 0.46 mM, 0.48mM, 0.47mM, 0.47 mM, 0.54 mM.

The most obvious suspect value is 0.54 mM.

Q calc = [0.54 - 0.47]/[0.54 - 0.46] = 0.875

From the tables for a sample size of 6, Q crit  = 0.625 at 95% confidence level.

As Q calc exceeds Q crit, the data point can be rejected.
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Significance tests

A significance test establishes if two statistics are the same or if they are

significantly different.  As with the Q test for outliers a calculated value is 

compared to a critical value, usually obtained from tables. If the calculated 

value exceeds the critical value, the difference is deemed to be significant. 

Examples of where this test could be applied are:

 Comparing the mean of a set of data with the „true‟ value, could establish if 

there is a bias in the result. 

 The means of two methods could be compared to establish if there is a 

significant difference between the methods.  

 Comparing variance can establish if the precision obtained by one method 

or instrument is significantly better than that obtained by an alternative 

technique.

In each case, the statistical test is just one step in a process.
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The t-test
A t-test is used for comparing two means.  If the means are the same then 

we can say (rather obviously) there is no difference.  In other words the 

difference  x, or (x1 -x2) = 0.

The t-test is used, to test whether  x is significantly different from zero.

The value of „tcalc‟ is calculated using the formula – equation (5.8):

tcalc = (x1 - x2) / s(√(1/n1+1/n2) Equation (5.8)

and compared to that of „tcrit‟ at the 95% confidence level. If the calculated

value exceeds the critical, then there is a significant difference between the 

means.

As there is a standard deviation associated with each data set, the standard 

deviation in this formula is a pooled standard deviation obtained by:

S
2

= [(n1 - 1)s1
2

+ (n2 - 1)s2
2
] / (n1+ n2 - 2) Equation (5.9)

Note: There are (n1+ n2 - 2) degrees of freedom as two means were drawn 

from the total data set.
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Example (5.v) – a ‘t’ test to compare two means

Two methods for the determination of antimony in the atmosphere were compared, 

and the data shown in table (5.3) was obtained

From this data the following calculations were 

obtained:

x1 = 19.98 mg/m
3

S1 = 3.14 mg/m
3

x2 = 18.8 mg/m
3

S2 = 2.61 mg/m
3

Pooled standard deviation = 2.89

„tcalc‟ = 0.708

„tcrit‟  = 2.23 at 95%

Thus there is deemed to be no significant 

difference between the two means

Table 5.3    
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Example (5.vi) - a t-test to compare a mean with a known value

Where the mean of a set of data is being compared with a true value, , a t-test is used.

The „tcalc‟ value is obtained from equation (5.10):

( x-) (√n/s)          Equation (5.10)

In this case there is only one value for standard deviation, that associated with the 

measured value.  The true value may have been a quoted value, a consensus true value

from a number of labs or the value from a certified reference material, CRM. 

From the previous example (5.v), the proposed method is compared to the „true value‟, 

 = 20 mg/m
3
.  Is 18.8 mg/m

3
, significantly different to 20 mg/m

3
in this case?

tcalc= (18.8 – 20)/(√6/2.61) = 1.27         [Note: the negative sign is ignored]

tcrit (at 95%) = 2.57

Thus, as the calculated value is again lower than the critical value at the 95% 

Confidence level, the proposed method produces a result that is not significantly 

different from the true value.
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Comparing standard deviations, the F-test.

Comparing the standard deviations of sets of data is carried out by the F-

test.  The statistic, Fcalc is compared to Fcrit, obtained from tables.  This test 

uses a comparison of the two variances from the methods and the 

calculation is given by equation (5.11):

Fcalc = s1
2
/s2

2
Equation (5.11)

Where the variances are chosen such that Fcalc will always be greater or 

equal to 1.

If the comparison is being made to establish if the precision of one method 

is better than another, then a one-tailed test is used. If the test is to 

ascertain whether there is a significantly different between the two standard 

deviations, a two tailed test is used.
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The F-tables

For a one-tailed test at 95% confidence, see Table (5.4) on the next slide.
Other tables at different confidence levels, can be found in specialist textbooks 

on statistical methods.

When comparing two standard deviations to see if they are significantly 

different, it is necessary to use the one-tailed F-tables. 

The set with the larger of the two variances is read horizontally and that with 

the lower variance is read vertically.  From this it is possible to read the 

value for Fcrit.  The table shown as table (5.4) on the next slide illustrates 

how an F-test table is to be applied..  

Select the column corresponding to the degrees of freedom,  for data set 1 

from the top row of the tables, then drop down that column until you reach 

the row corresponding to  for data set 2, and read the value for Fcrit.

When comparing two precisions to determine if one is significantly better 

than the other, an assumption is being tested, so a one tailed test is applied 

in this situation.
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Table 5.4 - critical F-values for 95% confidence level

Note: the figures in red relate to example (5.vii) on the next slide
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Example (5.vii) of an F-test to compare precisions

Returning to the data used in example (5.v) which is

shown again in the table on the right.  The F-test can

be used to compare the precisions between the two

methods.

Standard Method :

x1  = 19.98 mg/m
3
, 

S1 = 3.14 mg/m
3

S1
2
= 9.86 

Proposed Method:

x2 = 18.8 mg/m
3
, 

S2 = 2.61 mg/m3

S2
2

= 6.81

n1 and n2 = 6

1 and 2 = 5

Fcalc = 9.86/6.81 = 1.45

Fcrit =  5.05

Thus as the calculated value is less than the critical value, there is no significant difference

between the two precisions of the two procedures.

Sample 

no

Standard

mg/m3

Proposed

mg/m3

1 25 22.2

2 19.5 19.2

3 16.6 15.7

4 21.3 20.4

5 20.7 19.6

6 16.8 15.7

As we are testing to see if the precision of the standard

method is superior to that of proposed method, then

a one tailed test may be employed
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Example (5.viii) - a t-test to test if means are significantly different

In 1904 Lord Rayleigh won the Noble prize for the discovery of argon.  He was measuring the mass of 

a gas by two different methods, he noticed a discrepancy in the two sets of data, tested it, found it to be 

significant.  If he had not known his expected measurement uncertainty, then the discrepancy may have 

been attributed to experimental error, and the discovery of argon delayed. The table gives the data for 

the weight of gas, after removal of oxygen by two different methods, test to see if the two data sets are 

significantly different.

For the gas from air:

Mean = 2.31011

Std dev = 1.426 x 10
-4

n = 7,  = 6

For the gas from chemical decomposition:

Mean = 2.29947

Std Dev = 1.379 x 10
-3

n = 8,  = 7

Pooled standard deviation, S = 1.016 X 10
-3

t calc = [(2.31011 - 2.29947)/(1.016 X 10
-3

X √(1/7+1/8)] 

= 20.25

t crit   = 2.16 ( =13, 95%) 

The means are significantly different. Rayleigh then correctly concluded there was something else in the 

oxygen free air, not present in the chemically deoxygenated system.

From air (g) From 

chemical 

decomp.(g)

2.31017 2.30143

2.30986 2.29890

2.31010 2.29816

2.31001 2.30182

2.31024 2.29869

2.31010 2.29940

2.31028 2.29849

2.29889
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Summary of equations & tests

Table 5.5– summary of statistical equations & tests
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Statistics and calibration curves
The straight line is used regularly in analytical science, one of the more 

common applications being to determine the concentration of an unknown 

from a series of standards.  This is referred to as the calibration curve and 

will be explained more fully in this section. [also refer Chapter 4 in this 

teaching and learning programme]

Where there are complex matrix effects for example, direct comparison with 

separate standards may not be applicable, in this case the method of 

multiple standard additions may be used.  In this example the value of the 

intercept is calculated. [Again refer to Chapter 4]

Sometimes a value for the slope is required, for example  when determining 

molar absorptivity (or molar absorption coefficient) from a Beer-Lambert 

plot. [ please refer to Chapter 10 of this teaching and learning programme]

All of the above require a robust statistical method capable of determining 

the required statistics, with a certain degree of confidence.

Continued on the next slide
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Calibration curves
To prepare a calibration curve, data is collected and evaluated in a particular

way.  Instead of carrying out replicate analysis of a single measurement, 

measurements are taken over a wide concentration range.

A minimum of 4 calibration standard solutions are prepared.  These standards

are measured under exactly the same conditions as the unknown solution of 

analyte.  A graph is established and the concentrations of unknown samples 

can be determined. The following questions about the calibration may then be

posed

 Is the graph linear?

 What is best straight line (consider error/uncertainty)?

 What is the uncertainty associated with the slope and intercept?

 What is the uncertainty associated the determination of the unknown 

sample?

 Can we use the data to determine the Limit of Detection, LOD for the 

method?
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Preparation of a calibration curve

The standards used to prepare calibration curves should “bracket” the

unknown, except when using the method of standard additions. Always include

a blank. The blank itself is subject to error and therefore should not normally be

subtracted from the calibration standards.

The standards are measured, and a direct measurement of response, or

the ratio of the response and an appropriate internal standard, is recorded.

Instrument response is plotted on the vertical, „y axis‟, standard concentrations

are plotted on the horizontal, „x axis‟.  As the analyst controls the preparation of

the standard solutions, assuming that there is no gross error on behalf of the

analyst, the uncertainty is assumed to be associated with the instrument 

response.

When the series of standards have been measured, the plot is constructed as

described above.  It is always good practise to graphically plot the data and 

visually inspect it prior to further data analysis.

Please refer to Chapter 4 of this teaching & learning programme

Continued on the next slide
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The regression carried out is referred to as the regression of „y on x‟, „y‟ 

being the independent variable.  A linear equation is generally expressed 

algebraically by the equation:

y  = mx  + C

Using the Linear Regression mode of a hand held calculator will allow 

regression or correlation coefficient, r to be calculated.  The slope, m, 

and the intercept,C.  It will also allow the calculation of any value of x for a 

given value of y, and vice versa.

Excel, or similar programs can carry out regression calculations as well as 

plot the data and provide residual plots.

It is also possible to prepare a spreadsheet which can be customised to 

give all of the above information including confidence limits for slope, 

intercept and determination of unknown, and an estimate of limit of 

detection.
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Testing for linearity

The correlation or regression coefficient, r, establishes if there is a linear 

relationship between the variables xi and yi.  

For a perfect positive correlation, the value for r of +1 or  -1 represents

a perfect negative correlation.  As most analysis suffer from some degree

of random variation, values close to 1 are acceptable.  Significance tests

can be carried out to establish if r is significantly different from 1, but are

beyond the scope of this unit.

An r value close to 0 means x and y are not linearly related, but the plot should 

be inspected for some non-linear correlation.
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Example (5.ix)

Riboflavin (vitamin B2) is determined in a cereal sample by fluorescence (see Chapter 11) in 5% acetic acid 

solution.  A calibration curve was prepared by measuring the fluorescence intensities of a series of standards.

The data obtained is tabulated and shown graphically below.  Show that there is a good linear relationship 

between the data points.  Although this would normally be achieved by using a simple computer or calculator 

programme, the calculation shown partly as table (5.6) on the next slide shows how the result is achieved.

Figure 5.2



Xi (xi – x) (xi – x)
2

Yi (yi – y) (yi – y)
2

(xi – x)(yi – y)

0 -0.3 0.09 0 -16.72 279.56 5.016

0.1 -0.2 0.04 5.8 -10.92 119.25 2.184

0.2 -0.1 0.01 12.2 -4.52 20.43 0.452

0.4 0.1 0.01 22.3 5.58 31.36 0.558

0.8 0.5 0.25 43.3 26.58 706.50 13.29

Σ=1.5 Σ=0.40 Σ=83.6 Σ=1157.10 Σ=21.5

x = 0.3 y=16.72
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21.5

√ (0.40)(1157.1)

The value of „r‟ is very close to 1 so there is a good linear relationship between

signal and concentration.

Table 5.6 –

calculation

of 

correlation

coefficient
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Residual plots

In the example (5.ix) both a visual inspection of the plot, and r suggest a very

good linear correlation.  An alternative technique is to plot the residuals.    

When the „best‟ line has been established it will pass through all the points

described by „x‟.  However, a new set of „y‟ values will have been described.  

These are referred to as „fitted‟ y values,    .  To construct a residual plot use

the equation of the line to determine     for each value of x.  Plot the difference, 

(    - y) against  x.  For the calibration of riboflavin as shown in figure (5.2), the

residual is shown in figure (5.3):

ŷ

ŷ

ŷ

Figure 5.3 - residual

plot

Continued on the next slide

ŷ
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Interpreting residual plots

A horizontal line is a perfect linear correlation.  As most lines have some

random error, a „normal‟ residual plot for a straight line will have random scatter

about the x axis. As is the case with the example illustrated in figure (5.3).

The main characteristics of a residuals plot are:

 A curved plot implies a non-linear correlation, see examples on the next slide.

 Residuals that increase or decrease with x indicate a „non-constant‟ variance.

 Large individual residuals are probably outliers, which can be eliminated by 

methods beyond the scope of this unit.
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Residual plot for a plateau

X Variable 1  Residual Plot

-2

0

2

0 2 4 6 8

X Variable 1

R
e

s
id

u
a

ls

Figure 5.4   - a calibration

plot showing a plateau

region

Figure 5.5   - residual plot for a calibration

graph containing a plateau

region
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Residual plots for a curve

Figure 5.6 - curved 

calibration plot

Figure 5.7  - residual plot for a 

curved calibration plot
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Determining the slope

As can be seen from the preceding examples, the best straight line is the line

that minimises the residuals.  It is actually attempting to minimise sum of 

squares of residuals, and is sometimes referred to as the method of least 

squares.

To calculate the line of regression of „y‟ on „x‟ use the formula:

and:

a  = y - bx Equation (5.14)

Remember ‘a’ is the intercept and ‘b’ is the slope in the [y  =  bx  +  a] equation
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Equation (5.13)
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„Errors‟ in the slope and intercept

To determine the uncertainty in the slope and intercept a statistic similar 

to „s‟ is calculated:

Then the standard deviation of the slope can be calculated:

And the standard deviation for the intercept:
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Equation (5.15)

Equation (5.16)

Equation (5.17)

Where the yi values are the 

points on the calibrated 

regression line corresponding 

to the individual ‘x’ values

^
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Confidence limits for slope and intercept

Having calculated values of standard deviations for slope and intercept, 

confidence limits can be calculated in the usual way:

Slope: b + t sb/ √n

Intercept: a + t sa/ √n

Where t is taken at desired confidence level and n-2 degrees of freedom. 

[Note: n-2, because two averages have been calculated from the data –

average of both „x‟ and „y‟ values. ]

Both the slope and intercept are used to determine the „unknown‟. If an

unknown sample containing x0, gives an instrument response of y0 and „m‟ 

replicates were measured, then: 
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Equation (5.18)
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Summary of equations used in calibration data

Test / statistic Equation

Testing for 

linearity

Determining the 

slope
a = y - bx

Errors in the

slope &

intercept

Confidence

limits for

slope &

intercept
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Table 5.7 – summary of statistical tests & equations
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Confidence limits for an „unknown‟

From equation (5.18) it can be shown that the confidence limits decrease as we

approach the mid point of the calibration plot (median)and thus the closer we 

are to this central point, the more reliable the result obtained is going to be.

Thus to narrow the confidence limits (yo approaches y) we should:

 Increase the number of calibration points (increase „n‟)

 Take replicate measurements of unknown (increase „m‟)

A graphical representation of the 

relationship between a calibration 

plot and confidence limits is shown

In figure (5.8)

(x , y)
Figure 5.8 – confidence limits

for a calibration plot

Confidence limits
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Limit of detection and quantitation
For an instrumental method, where the response is linear, the limits of

detection and quantitation can be estimated using the values obtained from

linear regression.

The limit of detection is the analyte concentration that gives a signal 

significantly different to that of the blank/background. The limit of quantitation

is defined as the lower limit for precise quantitative measurement

Mathematically, these are represented as:

LOD y = yB +  3sB Equation (5.19)

LOQ y = yB + 10sB Equation (5.20)

Where yB is given by a, the intercept and sB,is the standard deviation of the

blank.  The value of sB may be obtained by either measuring the blank several

times which is time-consuming, or by using the sy/x statistic as given by

equation (5.15). This gives a value of y which can then be used to calculate ‟x‟, 

the concentration.
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The method of standard additions

In most instrumental methods using calibration, a series of standards

are prepared and compared to the unknown.  There are situations however

where matrix effects can interfere with the analysis and thus the method of

standard additions becomes the method of choice.  For instance, it may be

difficult to extract a sample from the matrix.  In this case known amounts of 

analyte can be added to the sample and matrix and the response measured. 

The method of standard additions is used routinely in atomic spectrometry and

electrochemical analysis to avoid matrix effects.

Equal volumes of sample solution are taken and are spiked with known

amounts of analyte.  Then ALL solutions are diluted to the same volume.    

The resultant data is plotted on a graph, with the instrument response on the „y‟

axis and the amount added on the „x‟ axis. 

Please refer to Process Unit 6 in Chapter 4 of the teaching and learning programme
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To “calculate” the amount (or concentration) of analyte extrapolate to y = 0. 

This intercept, of the x axis, can be estimated by intercept/slope:

a/b

Both a and b are subject to uncertainty, therefore a standard deviation

associated with the extrapolated value of x, „xE‟, can be calculated:

Confidence for xE:

xE± tsxe/ √n
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To calculate sample concentrations 

from standard additions

Equation (5.21)
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Reflection on the construction of 

calibration graphs
Some final rules for the construction of successful calibration curves:

 Calibration curves should bracket the unknown, this is because there is less 

variation toward the centre of the line, the error is greatest at the extremes, 

extrapolated values will have larger uncertainties, they may also be outside 

of the linear range.  

 The intercept is a value obtained from an extremity, there will be larger 

uncertainties associated with it than for a sample „read‟ from the centre of 

the graph.  

 As the method of standard additions depends on an extrapolated intercept, 

it will have greater uncertainty than other methods, and should only be used 

when there is no other method available.
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Measurement uncertainty
The term „ uncertainty‟ means doubt and thus in its broadest sense, the 

uncertainty of a measurement means doubt about the validity of the result.

ISO definition of measurement uncertainty

A parameter associated with the results of a measurement that characterises

the dispersion of the values that could reasonably be attributed to the measureand

(that which is being measured)

The uncertainty of a measurement comprises in general many components 

associated with the overall analysis and is in effect a statistical value associated

with all of the possible errors which could conceivably occur during an analysis.

The essential difference between uncertainty and confidence limits, is that the

latter refers only to the final measurement.  They take no account of any of the

other parts of the overall method by which the analysis was carried out.

Measurement uncertainty is expressed as a bar on either side of the measured 

value, giving a band of values within which there is 95% confidence that the

real values lies
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Example (5.x) - the error components associated with a simple acid-base titration

All parts of the procedure will affect the total uncertainty associated with the result, but 

some will have more effects than others.  The potential sources of uncertainty are:

 sampling – was the sample homogeneous?

 matrix effects and interferences;

 loss of sample during transfer;

 standardisation of the titrant;

 uncertaintities in weights and volumes through the equipment used;

 personal bias in the reading of analogue instruments/glass apparatus.
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Calculating uncertainty
To calculate measurement uncertainty of a method, all sources of uncertainty

must be combined, this is sometimes referred to as propagation of error.  

Figure (5.9) shows the stages in the calculation process.

Specify measureand

Identify sources of uncertainty

Quantify uncertainty

Express all as standard uncertainty

Calculate combined uncertainty

Each contribution to the uncertainty of a 

method is referred to as an uncertainty 

component. When they are expressed as 

a standard deviation, they are referred to 

as a standard uncertainty. For  the result 

of a measurement, the total uncertainty is 

referred to as combined standard 

uncertainty.  Finally, the expanded 

uncertainty is calculated by multiplying 

the combined uncertainty by a coverage 

factor.

These terms are explained on the 

following 5 slides

Figure 5.9  - stages in the estimation of measurement uncertainty

Calculate expanded uncertainty
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Expressing uncertainty

Standard uncertainty [u(y)] - is the standard deviation of an uncertainty 

component.  Note: In some cases there is a correlation between uncertainty 

components necessitating the calculation of covariance.

Combined standard uncertainty [uc(y)] – estimated standard deviation equal to

the +ve square root of the total variance obtained by combining all variances 

and covariances.

Expanded uncertainty [U] – provides a range of values within which the true 

value is believed to lie.  U is obtained by multiplying the ucy value by a coverage

factor „k‟.  The value of „k‟ is dependent upon the level of confidence required.

For 95% confidence, the value of „k‟ is 2 [actually 1.96 from the „t‟ distribution

table]
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Estimating uncertainty

Figure (5.9) on slide 52 highlighted the stages in the estimation process

 Specification – write down a clear statement of what is being measured

including measurement quantities, constants, calibration standards etc.

 Identify sources of uncertainty – list all possible sources

 Quantify uncertainty – measure or estimate the size of the uncertainty

associated with each potential source of uncertainty.  Not all of the components

will have a significant effect on the combined uncertainty and those having a

minor effect may be disregarded.  If the level of uncertainty varies with the

quantity then this will need to be taken into account.  Individual components

may be estimated in a number of ways.  For instance:

- experimental work carried out in the laboratory;

- analysis of reference materials;

- utilisation of published data;

- judgement of the analyst.

Continued on the next slide
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Expressing standard uncertainties – all uncertainty components must be

expressed as standard uncertainties.  This may be achieved in a number of ways.

 Where a value was obtained experimentally, it is possible to express this as a

standard deviation;

 Where an uncertainty is obtained from previous results, it may already be in 

the form of a standard deviation.  However if a confidence interval is given

then a calculation will need to be performed. 

 Where no confidence interval is provided, then it is usual to assume a 

rectangular distribution with a SD of x/√3

 Where an estimate is made on judgement, it may be possible to estimate

directly as a SD.  If this is not possible assume a rectangular distribution

Continued on the next slide

Example (5.xi) – a balance reading is quoted as ± 0.1 mg at 95% confidence.

From statistical tables, 95% confidence refers to 1.96.  Thus the SD is 0.1/1.96 = 0.05 mg

Example (5.xii) – a grade A 25.0 cm3 pipette is certified to deliver 25.0 ± 0.2 cm3.

The standard uncertainty is thus 0.2/√3  =  0.11 cm3
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Calculating the combined uncertainty – there are three  rules that normally

apply for combining together the individual standard deviations.

 Rule 1 – applies when considering only the sum or differences of quantities.

For instance: y  = a  + b  +  c.  The combined uncertainty is then given by:

uc(y)  =  √[ u(a)2 +  u(b)2 +  u(c)2] Equation (5.22)

 Rule 2 – applies when considering a product or a quotient.

For instance: y  =  abc  or y  =  a/bc.  The combined uncertainty is then given by:

uc(y)/y  =  √{[u(a)/a]
2

+  [u(b)/b]
2

+  [u(c)/c]
2
} Equation (5.23)

[Note: u(x)/x is a relative SD]

 Rule 3 – applies when considering an exponent term.

For instance:  y  =  a
n

n X y X u(a)
uc(y)  = Equation (5.24)

a
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Calculating and reporting expanded uncertainty – multiply the uc(y) value by 

the coverage factor „k‟. This is usually k is set to 2, but where there are less than 6 

degrees of freedom, for any major uncertainty component, then „k‟ should be set

at the two tailed t-value for the degrees of freedom of that component, at 

95% confidence.

Example (xxxi) – total nitrogen is determined as 3.53 % with a combined uncertainty 

of 0.08 %. 

Allowing for the coverage factor of 2, the result quoted as 3.53 ± 0.16 % at 95% confidence.
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Example (5.xiii) - the use of rule 1

We have 4 objects and we wish to know their combined weight and the uncertainty associated 

with this weight. The following information is available:

a  =  27.72 g, u(a)  =  ± 0.01 g

b  =  32.35 g, u(b)  =  ± 0.03 g

c  =  47.10 g, u(c)  =  ± 0.12 g

d  =  19.86 g, u(d)  =  ± 0.02g

The model for this estimation of uncertainty is:  T (total weight)  =  a + b + c + d

Using rule 1, the combined uncertainty is:

uc(T)  =  √[u(a)2 + u(b)2 + u(c)2 + u(d)2]

=  √[0.0001 + 0.0009 + 0.0144 + 0.0004]

=  √0.0158

=  0.126

T        = 27.72 + 32.35 + 47.10 + 19.86

=  127.03

Therefore the combined weight and its associated combined uncertainty is:

127.03 ± 0.13 g or 127.03 ± 0.25 g at 95% confidence as an expanded uncertainty
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Example (5.xiv) - the use of rule 2

In a simple titration, an unknown HCl solution is titrated against a standard solution of NaOH.

Calculate the concentration of the HCl together with its measurement uncertainty.  The

Following information is available:

CNaOH =  0.0994 M, u(CNaOH) =  0.00017

VNaOH =  25.00 cm3 u(VNaOH) =  0.022

VHCl =  25.40 cm3 u(VHCl) =  0.034

The model for the estimation of the uncertainty is:  CHCl =  [CNaOH X VNaOH]/[VHCl]

Thus the HCl concentration is calculated to be:  

CHCL =  [0.0994 X 25.00]/25.40 M  =  0.0978 M

Using rule 2 the  combined uncertainty is:

uc(CHCl)/CHCl   =  √{[u(CNaOH)/CNaOH]2 +  [u(VNaOH)/VNaOH]2 +  [u(VHCl)/VHCl]
2}

=  √[0.0000029  +  0.0000007  +  0.0000017]

=  0.00230

Thus uc(CHCl)  = 0.00230 X 0.0978

= 0.000225

Concentration of the HCl is 0.0978 ± 0.0002 M or 0.0978 ± 0.0005 at 95% confidence
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Have the objectives been met?
By this stage of the analysis, all measurements have been made and an

assessment of their reliability established by statistical means.  It is now

necessary to look at the data and to see if the initial objectives for carrying

out the analysis in the first place have been met and the problem solved.

If the tests and analyses carried out have not totally solved the problem as far

as the sample provider is concerned, then it  may be necessary to carry out 

further work.  This may involve examining the sample, probably by using further 

and different techniques, in order to:

 Provide further qualitative information about the sample;

 Provide more quantitative information at lower detection levels for

individual analytes;

 Provide quantitative information with lower estimates of uncertainty;

 Develop an analytical method that would be more cost effective for routine

usage.

In the end, it is the customer who will determine if the analytical project 

has been successful.
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Question 5.1 The results of determination of Titanium in four samples of an CR alloy by a 

spectrophotometric method are shown in the table below, 8 measurements were made  for each 

determination.   The mean value for each sample is compared to the quoted value of the certified 

reference material. Is there a significant difference for the value obtained by the spectrophotometric 

method and the known amount in the certified reference material?

Sample CRM %Ti Mean %Ti sd

1 0.496 0.482 0.0257

2 0.995 1.009 0.0258

3 1.493 1.505 0.0287

4 1.990 2.002 0.0212

Question 5.2 Calculate the combined measurement uncertainty for the following problem –

Y = AB/C. 

Where A = 1.76 + 0.03 : B = 1.89 + 0.02; C = 0.59 + 0.03
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Outline answer to question 5.1

The equations relating to this calculation are shown on slides 21 - 24

The CRM value is the accepted true value: 

Use the formula: (x-) (√n / s)

tcalc = (0.482-0.496) √(8/0.0257) = 1.54

tcrit = 2.36 from tables at 95% confidence.

Conclusion: there is no significant difference between the sample and the CRM 
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Outline answer to question 5.2

The equations relating to this calculation are shown on slides 53 - 60

1. Combine the values = 5.64

2. Convert each uncertainty to relative uncertainty and square them: 

0.03/1.76 = 0.017, 2.9 exp
-4

0.02/1.89 = 0.011 1.12 exp
-4

0.02/0.59 = 0.033 1.15 exp
-4

3. Then take the root sum of squares = 0.04, and multiply by 5.64 = 0.225

4. Express as: 5.64 + 0.23


