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Welcome 
 

Welcome to session 1 of the Physics programme. The approach we’ll be taking in this session 

will set the structure for the whole of the module.  We’ll begin by introducing a problem that 

will cover the main learning objectives of the session. We’ll then look at what is required to 

solve this problem; We’ll build up this knowledge step by step, applying it to the solution of 

the problem as we proceed. When we get to the end we will have found a solution to the 

problem. Then we’ll invite you to try some problems covering again some of the topics that 

have arisen during the session, either on your own or with guidance. We’ll also invite you to 

raise any issues with these problems in the tutorial. 

 

Session Author 
 

Prof. Derek Raine, University of Leicester. 



Learning Objectives 
 

 Define velocity and acceleration  

 Use constant acceleration formulae 

 Define equilibrium as the balance of forces 

 Use Newtonian equations of motion to compute the behaviour of bodies subject to 

unbalanced forces  

 Use graphical representation and explain the advantages of so doing 

 Demonstrate a knowledge of conservation of energy and momentum and their use in 

applications  

 Solve problems involving work and power  

 Use dimensional analysis to derive simple relationships  



Section 1: Forces 
 

Problem 1: Making Lead Shot 
 

The lead shot used in shotgun 

cartridges consists of small 

spherical pellets 2-3mm in diameter 

and this is made by pouring molten 

lead through a frame suspended in 

a high tower, a method that has 

been used since its invention by 

William Watts in 1782. Now in 

order to produce spherical shot the 

lead has to solidify before the pellet 

has reached its terminal velocity. 

How high should we build the 

tower?  

Let’s see what we need to find out 

about this problem: we’ll call these 

our learning issues.  

You might like to stop and think 

about this before going on.  

This is my list so far:   

We need to find out what is meant by terminal velocity and why it is important?  

We need to think about how we can find the distance fallen through to reach terminal 

velocity?  

What happens before terminal velocity is reached?  

What happens afterwards that prevents the formation of spherical shot pellets?  

Let’s get back to basics: what causes the motion of the shot? – clearly the forces acting on it.  

So one of our first questions will be: What are the forces on the shot? 

A shot tower at Redcliff, Bristol. 

Photo by Yellow Book Ltd 

 

http://www.flickr.com/people/yellowbookltd/
http://www.flickr.com/people/yellowbookltd/
http://www.flickr.com/photos/yellowbookltd/2066598940/


Equilibrium: Balance of forces 
 

Interactivity: Drop a ball (or any other object you have 

to hand) and describe what you actually see as it falls.  

 

University Students almost always claim to see what they’ve been told happens – namely 

that the ball falls with constant acceleration. If you claimed this is what you saw, do it again. 

You can’t possibly tell that this is motion under constant acceleration, at least not with the 

unaided eye. To a first approximation it looks as if something odd happens to start with as 

you release the ball, and then the speed remains pretty constant after that. (Why shouldn’t 

it? – after all, there’s nothing in the way to do any pushing or pulling - or so one might 

think). This is a fundamental issue. Research shows that many university students 

understand less about physics after a course in mechanics than they did before it! What 

students learn to do is to make the correct responses in the classroom (without believing 

them) and carry on with their naive Aristotlean perceptions outside the classroom. This 

makes physics totally irrelevant to these students. 

The problem with seeing what is happening here is the strength of gravity – 9.8 m /sec2 is a 

big acceleration for the unaided eye to follow. To solve this problem, we can effectively 

weaken gravity by watching motion on an inclined plane, as Galileo discovered. We’ll come 

back to this in the next session. For the present, let’s take it that acting alone gravity 

produces a constant acceleration.   

The gravitational force on a body of mass m is its weight, mg.   The other force on the body is 

the resistance of the air. 



 

The figure shows how we can divide the fall of the shot into two phases. If forces of gravity 

and air resistance balance we have equilibrium. You might think that equilibrium entails an 

absence of motion. In fact, in equilibrium there can be motion but there can be no 

acceleration. So at this stage the shot is at its terminal speed.  If the forces on a body don’t 

balance the body will accelerate. This is what happens up until the shot approaches terminal 

speed. 

So we know the gravitational force on the shot.  

Returning to the problem: how do we find the force of the airflow on the shot, which we’ve 

called Fr ?  

Dimensional Analysis 

To get the dependance of this force on the relevant physical quantities we can try an 

approach known as dimensional analysis. We start by identifying what the relevant physical 

quantities are for the falling shot pellet. You might like to stop and suggest your own.   

We identify the radius of the shot a, its speed v, the density of medium (air) , and the 

viscosity  as possible relevant quantities here. 

This gives us a problem. Dimensional analysis works, as we’ll see in a moment, by balancing 

dimensions of mass, length and time on both sides of an equation. That’s three things to 

balance – three equations – which can’t possibly determine four physical quantities’   



What we have to do is to guess that under some circumstances one might not matter. We 

guess that the speed must come in as must the radius under any circumstances. Suppose 

however that the viscosity is very very tiny; can the body experience a resistance to motion? 

Obviously, if it’s moving fast enough it will still encounter resistance from moving the air in 

front of it out of the way. So there is a regime where the viscosity doesn’t matter. In this case 

we can show that the Force is proportional to A v2 .  

Note that this result is not an approximation – the functional dependance is exact, only an 

overall constant is missing. In this case it’s a constant that depends on the shape of the body 

– usually it’s around 0.25. We’ll use this when we come to make accurate calculations later. 

For the moment we’ll ignore the constant. Alternatively we might think of circumstances 

where the viscosity is probably important (think of treacle) and the density less so – this 

gives Stokes’ formula. If we let the force depend on viscosity we would get F  a v. You 

might like to try to derive this by dimensional analysis. In this case the missing constant is a 

rather more significant 6 , but that can only be determined by a much more sophisticated 

mathematical treatment.  

One mistake students always make is to assume that all forces have to be included under all 

circumstances – sort of just in case approach. It’s true they are all always there, but there’s 

only a narrow regime in which all can have a discernable effect if they depend on different 

physical quantities. So the next thing to do is to see which of the three forces due to gravity, 

viscosity and air resistance, are the important ones for the falling shot. 

Initially v is small. Then v2 < v, so initially the relevant 

force is proportional to v and the drag can be neglected. 

We have gravity minus the viscous term causing 

acceleration  

Estimate viscous term:  

6 a v = 6  x 0.003 x1.5 x 10 - 5 v ~ 10-6 v N 

 But       mg = 11 000 x (4/3  a3)  x 10 ~ 10-2 N 

Key fact: the SI units (and their abbreviations) are  

mass: kilograms (kg); length: metres (m); time: 

seconds (s) 

Wikipedia gives density of lead = 11.34 gm cm-3  We’re using SI units, so how do we convert 

this into kg m-3? – don’t use a formula. We know 1kg is 1000 g so 11.34 g/cm3 is 11.34/1000 kg 

http://en.wikipedia.org/wiki/Lead


m-3. And 1m3  is 100x100x100 = 106cm3, so 11.34/1000 kg m-3 is 11.34/1000 x 106 kg m-3 or 11340 

so say 11000 in round numbers for our estimate. Note that we don’t know what speed the 

pellets have, so we’ve left it is the formula as v. 

By comparing the two values in equation (1) we see that at speeds less than 104 m /s the 

viscosity term is negligible compared to gravity. – so we don’t include it! Hence for the 

initial fall of the shot we have constant acceleration under gravity  

So our Next Learning issue will be: how do we compute the behaviour of the shot under 

const acceleration? First some revision. 

Summary 

 Force of Gravity = mg 

 Unbalanced forces cause acceleration 

 Use of dimensional analysis 

 Comparison of forces to determine which are important 

In this section we’ve used the fact that the gravitational force on a mass m is mg. We’ve seen 

that unbalaced forces on a body result in accelerations. We’ve seen how to use dimensional 

analysis to derive the force due to air resistance. And we’ve seen that in making a 

mathematical model we neglect any effects that are insignificant: often this can lead us to 

break up the motion of a body into different phases. 

  



SAQs 
 

1. In terms of mass, length and time, what are the dimensions of (i) energy (½ mv2), (ii) 

pressure (Force/area) 

(i) (a) MLT-1 (b) ML2T2  (c) ML2T-2  

(ii) (a) MLT-2 (b) ML-1T-2 (c) ML3T-2 

2. What are the SI units of (i) energy (½mv2), (ii) pressure (Force/area) 

(i) (a) Joules (b) Newton metres (c) Watt seconds 

(ii) (a) Newton metre-2  (b) Pascal (c) Joules (metre)-3 

3. What is 90 mph in ms-1? (Use 1km = 5/8 mile) (enter only the numerical value without 

units) 

(a) 0.04 (b) 1.5625 (c) 40 

4. The diffraction of a beam of light by a circular aperture produces a spot that has a 

size depending on the wavelength of light, the radius of the aperture and the 

distance between the screen and the aperture.  Despite the fact that the problem 

involves just three parameters, dimensional analysis cannot be used to determine the 

size of the spot. Why not? (No knowledge of the behaviour of light is required to 

answer this question.) 

(a) Because the dimensions involved are all lengths so the answer will have an 

unknown dependence on the dimensionless ratios of the lengths.  

( b) Because the formula involves addition 

(c) Because this is not a problem in mechanics 

(d) Because the formula involves an unknown constant.  

 

The answers are on the following page. 

  



SAQ Feedback 
 

1. (i) (a) the velocity has to be squared (b) Velocity is LT-1 so (velocity)2 is L2T-2  (c) 

correct – the dimensions are Mx(LT-1)2 = ML2 T-2  

(ii) (a) MLT-2 are the dimensions of force, not pressure (b) correct: pressure is 

force/area = mass x acceleration/area = (MxLT-2)/L2 (c) this is force x area not 

force/area 

2. (i) (a) Joules, Correct   (b) Literally correct, but not the SI name for the unit (c) 

Literally correct, but not the SI name for the unit  

(ii) (a) Literally correct, but not the SI name for the unit    (b) Correct  (c) Literally 

correct, but not the SI name for the unit. However, for order of magnitude estimates 

it is very often useful to recall that pressure is the same as energy per unit volume.  

3. (a) you probably forgot to convert km to m (b) 1 mile is 8/5 km so you should 

multiply by 8/5 not 5/8. (c) correct. 90 mph = 90x8/5 km h-1  = 90x8/5x1/60x1/60 m s-1  

4. For this question: 

a.  correct: if a formula involves a dimensionless ratio it cannot be derived by 

dimensional analysis 

b. It is true that formulae involving addition of two terms cannot be obtained by 

dimensional analysis, but that is not the issue here 

c. The fact that the fundamental units are mass, length and time, does not 

restrict the use of dimensional analysis to mechanics problems. All quantities 

can be expressed in these units. 

d. Multiplicative constants can never be found by dimensional analysis: all that 

can be determined is the proportionalities.  



Section 2: Kinematics 
 

Kinematics deals with the description of motion independent of its causes. So to study the 

initial motion of the shot we need to deal with the kinematics of constant acceleration. 

We should start by defining speed. Well, you know that Speed = distance/time. Stop and 

think a moment. This is not obvious – you’ve already forbidden your students to add unlike 

quantities (what does speed + time = ?) so why are they allowed to divide them? (Again, one 

rule for the physics class another for real life?) Speed is the distance travelled in a unit of 

time – dividing is the way to get this, which is why it’s valid.  

Everyone learns the constant acceleration formulae so I won’t try to persuade you not to 

bother. But at least let’s not learn them by rote -  Let’s see why they are obvious.  

First we have to define our terms:  u is the initial speed, v is the final speed after a time t and 

a distance s under a constant acceleration a.  

Then the equation (1) 

v = u + at – is the definition of acceleration – as what is added to the speed per unit time 

In the equation (2)  

s = ut + 1/2at2 – the ut is obvious – it’s where you’d be at constant speed. The at2 comes from 

at ( extra speed) x t (time) – why the ½ - because the extra speed isn’t at – it’s on average ½ 

as much.  

v2 = u2 + 2as This is where maths comes in! I have no idea how to make this formula obvious 

(without using ideas extraneous to kinematics). We know it is true because it can be derived 

from the other formulae by algebra. (Do it.) So we turn this round: the maths gives us a new 

insight into how the speed depends on the distance a body is accelerated for – its quadratic 

in v. (or equivalently, the speed increases from rest with the square root of the distance.) 

Interactivity: Sketch how you think the velocity of a 

shot pellet (y-axis) depends on time (x-axis) 

 



 

Now before we solve the problem mathematically we want to look at what we expect to 

happen. One way to do this is to sketch a graph. At this stage we don’t know the most useful 

graph to draw – speed versus time, speed versus height , or some other combination, so we 

might experiment with a few possible choices. The simplest to think about is speed versus 

time. Later we’ll see that this is not the most convenient, but let’s look at it for the present. 

The shot starts off with constant acceleration so moves off in a straight line (v =at) on this 

graph. That’s what makes this graph simple – we immediately see that a non uniform 

acceleration implies a curved line and vice versa. Note that we’re measuring distance from 

the top of the tower downwards, so the shot has a positive velocity even though it’s falling 

(its distance from the origin is increasing). Actually, on the graph we’re plotting speed rather 

than velocity, so this is positive anyway.  

The shot eventually reaches a terminal speed so the line must curve over to become parallel 

to the time axis. These two sections are joined by some smooth curve, which at this stage we 

can’t calculate but we can sketch roughly.    

The approximately constant acceleration phase (the red curve) intersects the approximately 

constant velocity phase (the blue line) around a time  tf on the graph. This time therefore 

divides the two phases of approximately constant acceleration and approximately constant 

speed.  

We can now make an order of magnitude estimate of the quantities involved algebraically. 

  



Algebraic Estimates 
 

The constant acceleration phase comes to an end when air resistance balances gravity, 

equation (1). Solving this for v  gives us the terminal speed, equation (2).  

To find the time tf and the corresponding height of drop H, we use the constant acceleration 

formulae. Equation (3) gives the time  and equation (4) the height.  

 

Note how in the right hand column we check the dimensions of our formulae to ensure we 

haven’t made a mistake. Note also how when we’re working out an algebraic result we use 

symbols for ALL the quantities, even the ones that have known constant values. This enables 

us both to check dimensions and to check for other mistakes more easily than if we had 

carried through a string of numerical values.  But the main advantage is that it clearly 

displays the dependence of any result on the input data – for example the dependence of the 

time on the air density .  

Note also that we go back to v2 = 2gh to get the height rather than s = ½gt2.  Don’t use 

intermediate results if possible, because that way mistakes don’t propagate through a 

calculation 

Once the forces of gravity and air resistance balance the acceleration is zero, so they continue 

to balance. The speed therefore remains constant at the terminal speed, which is of course 

the reason for then name  

Can we make some numerical estimates from this to answer our original problem? Let’s 

estimate the time taken to fall first. 



 

Interactivity: work out H to an appropriate precision. 

Check that your answer is reasonable 

1 has the greater number of decimal places so is the more precise; But it can’t be more 

accurate than the 1 dp of the input data. 2 has the greater accuracy because the data is given 

to greater precision. Results should never be quoted with more dps than the data.  

Our result is as precise as the data allow, but is it accurate? We’ve only given an 

approximation. Is this the best we can do? – Can we find an exact relation between v and 

distance fallen?  - 

Our next learning issue will be to see how forces are causing motion to get a more accurate 

description of the motion. This takes us into dynamics. First some revision.  

Summary 

In this section we looked at 

 Constant acceleration formulae 

 Graphical analysis 

 Terminal velocity or speed 

 Accuracy and precision 

  



SAQs 
 

1. Match  the quantities in the set (a), (b), (c) to those in the set (i), (ii), (iii) by balancing 

the dimensions (c = speed of light, G = Newton constant Nm2kg-2 ) 

(a) the lifetime t of a black hole of mass M and radius R 

(b) the energy per second L radiated in gravitational radiation by a body of mass M 

in an orbit of radius R 

(c) the escape speed from a planet of mass M and radius R 

(i)   M3c6G4  

(ii)   G1/2M1/2/R1/2   

(iii)  G4 M5 / c5 R5        

2. If a sprinter who clocks 10 s for the 100m were to be accelerating at a constant rate, 

how fast in ms-1 would he be traveling across the finish line? [Put in a number in 

numerically form with no units] 

 

The answers are on the following page. 

  



SAQ Answers 
 

(a) – (i), (b) – (iii), (c) – (ii) 

20  [m s-1] 

 



Section 3: Dynamics 
 

In this section we shall begin by deriving the Newtonian equations of motion for a point 

particle. The details of the derivation itself are not as important here as the general idea. 

Once we  have the equation of motion we can apply them to our problem to get a more 

accurate representation of the motion, which will confirm our previous estimates. 

 

Deducing the conservation of energy 
In standard university courses we normally think of deducing the conservation of energy 

from Newton’s laws of motion. This is not how it’s done in fundamental physics (including 

string theory!) we start from energy, so that’s what we’ll do here. *In more complex 

situations with many df  we need special techniques to extract the equations of motion for 

each df, but the principle is the same]   

Think up any number of coordinates to describe a system – let’s stick to one (x) for our 

example. Think up an expression for energy involving x. You can make up (an infinite 

number of ) your own theories of dynamics at this point, but sticking with the one that 

works we take (1).  

 

The first term is the energy of the free system – ½ mv2 or ½ x 2 - (without any interactions); 

the dot here dates back to Newton himself and is used to indicate a rate of change or 

derivative wrt (with respect to) time.  

The second term in equation (1) gives the interactions of the system with the world. In this 

case, when the world only makes an appearance through parameters in U, we call U a 

potential energy. Later we’ll use PE to introduce the notion of a field. We’ll also be able to 

clarify the nature of various types of energy.  

Here we just mention a useful example: in a gravitational field a body of mass m raised 

through a height x has PE mgx  Most students remember this as mgh but we use x here, not 

h to indicate that it is a variable coordinate of the system, not a fixed value.  



Where are Newton’s first and third laws in this picture? – The 1st law is NOT obtained by 

putting U or F=0. It says that frames of reference exist in which this derivation holds. i.e. 

with respect to x  which is the measured acceleration. These will be the so called inertial 

frames, which are considered to be non-accelerating so that we can use them as standards 

wrt which to measure accelerations.   

The third law only emerges here if we have more than one body: then it is contained in the 

symmetry of U with respect to the coordinates of those bodies. (And if U is not symmetric 

the third law is not satisfied.) 

Now derive Newtonian mechanics from conservation of energy. In this simple case of one 

coordinate we just differentiate the energy equation wrt time. The derivative of ½ m x 2 is x  

x x . To get the derivative of U wrt time, we use the chain rule: U changes only because x 

changes so its the rate of change with respect to time is the rate of change wrt x, dU/dx, 

times the rate of change of x wrt t, dx/dt or x . Cancelling x  and defining dU/dx to be the 

force F gives the Newtonian equations of motion (3).  

 

Note: you can go back the other way if you like. Reverse the steps to see how energy 

conservation can be derived from Newtonian dynamics for a force that can be expressed as 

the derivative of a potential energy.  

Many problems in dynamics can be solved using conservation of energy without needing 

Newton’s 2nd law (These are  before and after problems) We’ll see this later in the course. 

Let’s try to apply what we’ve learnt here to the shot problem.  

  



Equations of motion for the shot 
 

We immediately see a difficulty. Newton’s laws are derived assuming conservation of 

energy, but with air resistance this isn’t true. We have to assume that Newton’s 2nd law also 

applies to the force of friction, such as air resistance. This is an assumption. To prove it we 

should have to investigate the nature of friction which we are not going to do here. So lets 

assume that we can just add in the frictional force Fr (with the correct sign) to mg to get the 

total force, equation (1)  

 

Now we have a choice of how we solve this equation, corresponding to the choices we had 

of which graph to plot – v against time or distance and so on. We’ll choose to present v as a 

function of distance of fall, simply because we’ve tried the alternatives, and this give the 

clearest picture. .   

To start with then we need an expression for acceleration that involves v and x to put into 

(1). We have  d2x/dt2 = dv/dt = dv/dx x dx/dt by the chain rule, which can be written as 

vdv/dx as in equation (2). For those of you who are interested, lets see how we then solve the 

equation of motion for v(x).  

 

The solution is shown both as equation (3) and as the 

graph. Note that the graph is not v(x) or v(t) – In fact 

we’ve plotted v2 as a function of x, distance not time.  

PICTURE is NOT v(x)!!! 

This tells us the shot never reaches its exact terminal 

speed! But for x large enough, the speed is near 

enough the terminal one. If  we take x about m/2π a2 ρ 



as in our previous estimate, then we are about (1-e-1)1/2 of the terminal speed so only about 

40% out way there.  

Nevertheless this gives us confidence in our approximate approach to provide the correct 

order of magnitude. 

  



The shape of the pellets 
 

The original problem asked us to determine the shape of the shot pellets.  

The simplest approach is to put ourselves in the position of the falling shot – that is we 

transform ourselves to the reference frame of the shot.  

Once the shot has reached terminal speed we put ourselves in its frame of reference by a 

constant velocities transformation. In this reference frame the shot is at rest with the force of 

gravity balanced by the air resistance -  it’s just as if the pellet were resting on a table. 

Therefore, if it’s still liquid the drop will spreads out – it is not spherical!  

 

Consider next the initial stages of its fall, while air resistance is negligible and only gravity is 

acting. The shot is in free fall so in its frame of reference it is weightless. In these conditions 

the liquid pellet will adopt a spherical shape under the action of surface tension. 

Incidentally the shape of a falling raindrop is not spherical for just this reason. 

  



Summary 
 

 In this section we have studied the derivation of Newton’s laws from an energy 

function: 

 Their extension to cases where friction is present, the application to the shot problem 

using: 

 

 And the shape of the shot in free fall and at terminal speed.  

 

  

dx

dv
v

dt

xd
2

2



SAQs 
 

1. How do the constant acceleration formulae relate to Newton’s 2nd law?  

(a) They are logically independent because they describe kinematics, not dynamics 

(b) They are equivalent in the special case of a constant force 

(c) Constant acceleration is not possible in practice 

2. At what point do astronauts become weightless?  

(a) In orbit 

(b) As soon as the rocket motors are switched off 

(c) as soon as they leave the ground 

(d) never  

  



3. Match the equation of motion                       to a displacement-time graph. 

 

4. Arthur C Clarke suggested that high g-forces could be reduced to zero by immersing  

a body in a fluid at neutral buoyancy. Is this true? YES/NO 

 

 

The answers are on the following page. 

  

x
dt

xd
2

2



SAQ Answers 
 

1. (a) dynamics tells us what forces are necessary to set up kinematic relations – in particular 

how constant acceleration can be achieved (via a constant force) 

(b) correct: the law tells us that we need a constant force to maintain a constant acceleration 

(c) But it’s near enough that we can model the behaviour of real bodies in this way 

 

2. (a) they are weightless in orbit but this is not their first experience 

(b) Correct – once they are in free fall i.e. there are no non-gravitational forces  

(c) At this point they experience high g as the rocket accelerates as well as Earth gravity 

(d) once they are in free fall i.e. there are no non-gravitational forces they will experience 

weightlessness 

 

3. (a) Is correct: the acceleration (curvature of the velocity graph) increases as the distance 

from the origin increases (i.e as the velocity decreases) and is the velocity is then reversed 

(b) I guess you think the spikes come from the reversal of the motion when the deceleration 

has brought the mass to rest. But the reversal of the velocity must occur when it is at zero – 

which is quite smooth 

(c) I guess you’re thinking that the velocity hovers around 0 as it reverses; but the 

acceleration isn’t zero when the velocity is zero – it’s zero when there is no displacement (x 

=0). 

 

4. NO: The set-up is exactly the same as the falling of lead shot at its terminal speed when 

viewed in the rest frame of the shot or the body.  Here, the body in rest frame is  suspended 

in water instead of air. There are non-zero forces on the body which balance; the force on the 

body is not zero. A similar well known problem is the forces on a book on a table. It is not 

true that there are no forces because the book has zero acceleration. The book has zero 

acceleration because the forces balance.  

 

  



Section 4: Conservation Laws 
 

In this section we’ll look briefly at work done by a force and the conservation of energy. 

We’ll also look at the conservation of momentum and see how these concepts apply to the 

shot problem. 

 

The energy of falling shot 
 

In the free-fall phase the only force on the shot is gravity 

In this phase the total energy is a constant:                                  = constant  

The Kinetic Energy increases at the expense of Potential Energy. 

For a system and its environment energy is always conserved. 

Sometimes it is convenient to represent the effect of the environment by friction 

In this case the energy of the system is not conserved, but Energy loss = work done = Force x 

distance (or integral) 

We can see this for the shot in equation (1) 

 

Energy loss = Work done 

Energy non-conservation can also occur if the model has an explicitly time dependent 

energy – but that is a situation also obtained only by leaving out part of the system (the 

cause of the time variation). 

  

)(2

2
1 xUxmE 



Conservation of Momentum 
 

The momentum of a body is the producd mass times velocity. Unlike energy therefore, 

which has only a magnitude, momentum has both magnitude and direction.  Note that the 

force on a body is its rate of change of momentum. This is easy to prove for a constant mass 

(equation 1), but it’s also true for varying mass.  

 

If no external forces of any nature act on a system its momentum is conserved. In this case 

the potential energy can depend only on the internal relative coordinates of the system and 

not on the position on space of the system. This is easy to see: if the potential energy U were 

to depend on the position of the system, x, then dU/dx would be the force acting on the 

system and, since a force would be acting, momentum could not be conserved.   

In the terminal phase the shot is acted on by both gravity and friction. How does this lead to 

a steady speed? 

 Let’s look in a bit more detail on the interaction between the air and the 

shot. The interaction involves millions of collisions between the shot and 

the air molecules. Each collision transfers momentum from the shot to an 

air molecule. Newton’s third law ensures that in these collisions the force 

on the shot = force on air molecule; so the rate of change of momentum of 

shot = rate of change of momentum of air. Note that the air molecules 

then act as intermediates in an exchange of momentum between the shot 

and the Earth. Friction here arises from fluctuations in momentum as a 

result of a large number of collisions. In fact, frictional forces are always 

associated with fluctuations – a lot of puzzling paradoxes can be 

constructed by forgetting this.  

 

  



Summary of our solution to the shot problem  
 

The shot falls under the dominant influence of gravity with constant acceleration until air 

resistance becomes significant.  

Once air resistance is significant the shot reaches a terminal speed in which resistance and 

gravity balance. We can find the order of magnitude of the force due to air resistance by 

dimensional analysis. 

We can either estimate when the end of the constant acceleration phase occurs or we can 

solve the equations of motion exactly. 

We can work out the shape of the shot by examining the forces in the rest frame of the shot. 

Once terminal velocity is reached the shot cannot remain spherical. This the tower need be 

no higher that that required to achieve terminal velocity.  

This gives H = m/(2 a2 ) for a pellet of mass m, radius a and air density . No 5 shot has 

radius 1.4mm which gives H = 48.5 m.  

The energy and momentum lost by the shot is taken up by the air molecules. 

 

  



SAQs 
 

1. The body of mass m  in the picture has a gravitational 

PE of  

 (a) mghcos( ), (b) mgh  (c) mghsin( )  

 

2. Can a perfectly elastic body suffer damage in a collision?  

  



Further problems with outline solutions  
 

Dimensional analysis 
 

How does the period of a pendulum 

depend on its length? 

What properties of the pendulum 

and its environment are essential to 

the situation? 

mass of the pendulum m 

length of the pendulum l 

gravity g 

How do you think the period will 

change when we change the 

parameters?  

By equating powers of time length and mass you should find: 

= 0,  + =0, =- ½ so T  (l / g)1/2 

Why is this an amazing result? 

 

Discussion is on the following page. 

  

Foucault’s Pendulum. 

Photo by Ben Owtrowsky. 

http://www.flickr.com/people/sylvar/
http://www.flickr.com/people/sylvar/
http://www.flickr.com/photos/sylvar/70589378/


These problems illustrate some of the points you have learnt.   

It’s always a good idea to think about outcome of a problem before tackling it: we know that 

longer bobs swing more slowly – so T depends on l directly. Less gravity – less acceleration 

– longer period – So T depends on g inversely. Perhaps also more massive – greater gravity – 

so perhaps T depends on m directly. T might also depend on composition – a gold 

pendulum might swing differently from an iron one of the same mass, but we can’t put that 

into a dimensional analysis, so we’ll leave it aside till lesson 19.  

We can solve this by dimensional analysis in the same way as we did for the air resistance. 

Begin by letting the period depend on  m l g .  

Note: Appropriate dependencies for g and l. (although you can’t guess the square root). 

Note also can’t get l dependence on its own (need g as well) 

But also an AMAZING result: period is independent of m.  Where did we go wrong? 

Greater gravity, but also greater inertia! They cancel out. Why? – it took Einstein to see this 

as a problem and find a solution – in General Relativity (we’ll return to this in session 19) 

Note why dimensional analysis works – we can identify one length (the size of the bob, the 

thickness of the string, the angle of swing  etc are considered irrelevant.) So stripping the 

system down to its simplest components means we can make quantitative predictions.  

  



Constant Acceleration 
 

A Dept of Transport information film shows how much the stopping distance of a car 

travelling at 35 mph is increased over one travelling at 30 mph for the same deceleration. It 

might have more impact to show the speed of impact instead. Suppose a car can just brake 

from 30 mph to stop short of a pedestrian. What would be the speed at impact in braking 

from 35mph?  

Would this make people aware of the dangers of speed? 

 

 

The answer isn’t 5 mph! That’s non-linearity for you!  

How do we go about solving this. You can use the data for stopping from 30 mph to get the 

deceleration in terms of the fixed distance. If you know the deceleration you can work out 

the speed at impact from the new initial speed over the same distance. Incidentally, it’s 

much easier if you work the problem out in symbols and only put values in at the end.  

 

Discussion is on the following page. 

  



 

Why are the graphs straight lines? 

What difference would the inclusion of a reaction time make?  

The graph shows that the quadratic dependence on v is the reason for the high speed of 

impact – about 18 mph 

Notice how the graph illuminates the reason why the impact is at such a high speed.  

You can also use this to demonstrate the effect of reaction times – add a reaction time before 

you start to brake and see what a difference it makes. This is why you don’t use a mobile 

phone while driving.  

  



Power and Energy 
 

Drag racers accelerate from rest at constant power over a straight course and the one with 

the highest terminal velocity wins.  How does the terminal speed depend on the power of 

the car? 

Key fact: acceleration at constant power is not the 

same as constant acceleration 

 

This is a problem about the conversion of energy (the chemical energy in the fuel) to kinetic 

energy. Think about how you would tackle the problem before proceeding.  

The power of the car is constant – that’s what all the wheel spin at the start is about. The 

power is the rate of change of energy, hence the rate of change of 1/2mv^2. Since it’s the 

distance that determines the end of the race, we want the rate of change with distance, not 

time: hence Power = v ( Δ(1/2mv^2)/ Δs) So for fixed Δs, v3 is proportional to P. (Note you 

don’t have to integrate the equation, because we don’t need the constant of proportionality.) 

  



Conservation of Momentum 
 

Criminals prefer light weight guns because they are more easily concealed. Why are they in 

more danger of hurting themselves when firing such a gun? 

Key fact: momentum is always conserved 

               energy is conserved in elastic collisions  

 

What do we need to know: It’s a before and after question, so we need conservation laws. 

Conserve momentum 

to see that the recoil speed is inversely proportional to the mass of the gun. The energy of 

course depends on MV2 so is also inversely proportional to the mass of the gun.  

 

You have a similar issue in firing a shotgun – it’s essential to rest the gun on your shoulder 

before firing it.  

  



Summary 
 

Section 1 Dimensional analysis: the functional dependence in some systems can be 

analysed dimensionally. 

 

Section 2 Kinematics: constant acceleration formulae; 

v =dx/dt,  

a = d2x/dt2 = vdv/dx 

 

Section 3 Dynamics Equations of motion are obtained from energy conservation (by 

differentiation)  

Force = rate of change of momentum = ma 

 

Section 4 Conservation laws Momentum is conserved if there are no external forces; Energy 

is always conserved, but can be shared with the environment 

 

Section 5 Further problems  
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