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Maximising accuracy and reliability in sampling 

 
1.0 Introduction 
 
As already stated in Chapter 2 of this resource, the sampling of materials, will normally incur a 
measure of uncertainty.  
 
 
 
 
 
 
 
This uncertainty can only be minimised by careful attention to the development of the 
sampling plan devised for the taking of the samples and the care exercised in the proper 
storage and labelling of the samples taken.  Heterogeneous materials will incur higher 
sampling errors than homogeneous materials, with the error increasing with the extent of 
heterogeneity. 
 
 

Definition of ‘Measurement uncertainty’ 
An estimate of the range within which a true value of a measurand (analyte 

concentration/abundance) will lie 
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When attempting to sample any heterogeneous material, the measure of uncertainty, can be 
statistically reduced, by the taking and analysis of more samples.  Consider for instance the 
sampling of a field using the sample plot [Figure (01)]. 
 
The field has been divided into 16 strata, with two samples being taken randomly, from each 
stratum.  These samples are denoted by clear squares. 
 
 
        Stratum                            Random sampling positions 
 

 

 
 
             Figure (01) – stratified random sampling design 
 
In order to reduce the likely measure of uncertainty, we can either increase the number of 
strata, again taking two sample increments form each strata (clear squares) or alternatively 
increase the number of samples taken from each stratum.  Figure (01) illustrates the latter 
decision being made, the red squares (      ) showing the additional random samples to be 
taken from each stratum.   
 
The decision now has to be made, both with the original 32 sample increments, or with the 
new 64 sample increments, as to how many samples are to be sent for analysis. The 
decisions we can make are illustrated in Figure (02) 
 
 
 



 
 
 

Figure (02) – selection of samples for analysis 
 
‘Diagram A’ in Figure (02) shows the sample increments being composited, sub-sampled and 
either a single sample then supplied for analysis or replicate samples supplied for analysis.  
[Maximum of 4 analyses – assuming 4 replicate analyses on each sub-sample] 
‘Diagram B’ in Figure (02) shows each increment being sub-sampled and either a single or 
replicate analysis samples being derived from this. [Maximum of 256 analyses when 
related to Figure (02) – that is 64 sample increments with 4 replicate analyses on each] 
 
‘A’ represents the cheapest option with the highest measurement uncertainty whilst ‘B’ 
represents the most expensive option with the lowest measurement uncertainty, especially if 
replicate samples are chosen for analysis.  A compromise alternative could be to composite 
together samples taken from each sampling stratum, sub-sample and then to select for 
analyse, either a single or replicate portions. [Maximum of 16 or 64 analyses when related 
to Figure (02)]  The real choice will depend upon the reason for the analysis and the level of 
information required.   
 
 If for instance we wish to know the average levels of soil nutrients in the field and are 

prepared to accept a high level of measurement uncertainty, then the scenario 
represented by ‘Diagram A’ may be satisfactory with replicate analyses of the single 
sample being carried out.   

 
 If on the other hand we suspect that parts of the field may be suffering from chemical 

contamination, then samples from all strata will need to be analysed, probably by 
compositing sample increments from that stratum and performing a single analysis on the 
composite sample.  If contamination is found to be present in one or more of the strata, 
then these can be re-examined at a later time. 

 

Diagram A 

Diagram B 



2.0       Statistical sampling 
 
2.1 Introduction 
 
Note: this section on ‘Statistical Sampling’ assumes some knowledge of statistical procedure 
as used within Analytical Science.  It highlights just those elements that have an influence on 
sampling procedures.  For a fuller description of Statistics, learners are referred to Chapter 5 
of the Teaching and Learning package in Analytical Science. 
 
 
 
 
 
 
 
 
In using this definition, it is also assumed that the analyte to be measured, has a normal 
distribution within the population.  By this we mean that if it were possible to take an infinite 
number of samples from the population and to measure the analyte concentration in each, 
then the frequency distribution of the analyte should show a normal distribution, as illustrated 
in Figure (03) 
 
 

 
 
                      Figure (03) – normal distribution curve 
 
The normal distribution curve is symmetrical about the mean value of the measurements. The 
spread of the curve (ie: the range of concentration found for the analyte) is a function of the 
standard deviation (S) for the analysis.  The larger the standard deviation, the greater is the  
spread. 
 

The total variance (S2
total) shown by an analyte following analysis, is an additive combination 

of sampling (S2
sampling) and analysis (S2

analysis) variances [equation 01]. 

 

S2
total  = S2

sampling  + S2
analysis     [Equation 01] 

 
Where we are sampling a material, which can be considered as essentially homogeneous  
(1dm

3
 of a single phase liquid for example), then the majority of this variance may well be due 

to the analysis stages - those stages in the analytical process following that of sampling. [see 
slide 3 in Chapter 2 of this resource].  However where there is a heterogeneous distribution of 
analyte within the material matrix (many solid samples for example), then the majority of the 
variation will arise as a result of real differences in analyte distribution.  Under these 
circumstances, the analysis stage will make only a minor, and sometimes almost negligible, 

Definition of Statistical sampling 
Statistical sampling is based on the premise that all particles or portions of the 

material (population) to be sampled have an equal probability of being chosen as the 
sample. 



contribution to the total variance.  It is normally assumed that when one variance exceeds 
the other by greater than 10 times, then the smaller of these can be ignored. 
 
Let us consider some of these points in terms of statistical and algebraic equations.  The 
algebraic terms used are given in table (01), shown at the end of this section. 
 
Equation (01) has shown that the total variance in any analysis is a combination of variances 
from all stages in the analysis.  Where the analysis is complex, the S

2
analysis term may need to 

be subdivided to take into account variances introduced during the: 
 

 Sample preparation stage; 

 Separation and or concentration stage; 

 Measurement stage. 
 
These stages, in some situations, can result in large variances being introduced into the total 
variance [S

2
total ] and analytical development work may need to be carried out to reduce their 

overall significance.  For the purpose of this discussion however, all of these potential 
variances will be considered under the one single ‘analysis’ variance. 
 
From equation (01), the sampling variance may be represented as shown in [equation 02] 
 

S2
sampling  = S2

total   -  S
2
analysis    [Equation 02] 

 
The analysis variance may be calculated by carrying out the whole analysis on samples that 
are known to be homogeneous.  A minimum of seven replicate samples will need to be 
analysed and the variance calculated by squaring the resultant standard deviation. 
 
The sampling variance is also an additive combination of two other individual variances: 
 
 That due to the real variation of analyte distribution within the material to be sampled, 

termed the population variance [S
2

population ]; 
 That due to the actual sampling variance [S

2
practical ] – how good we are at taking the 

sample 
 

S2
sampling  = S2

population   +  S2
practical    [Equation 03] 

 
By careful attention to the sampling regime, it should be possible to reduce the value of 
[S

2
practical ], however the sampler has no control over the population distribution [S

2
population ].  

The size of these two components will influence the number of samples that need to be taken, 
in order to achieve an acceptable measure of measurement uncertainty. 
 
Some important sampling and measurement scenarios may now be considered. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
               Table (01) – algebraic symbols used in this statistical discussion     

Parameter  Symbol 
 

 

True mean     
Estimated mean x 

Standard deviation  S 
Variance   S2 

Statistical term from  t 
‘t’ test table 

Number of samples  ns 

taken 

Number of replicate  na 
analyses 



2.2        Measurement situations 
 
2.2.1 Where the sampling variance is significant and the measurement variance is 
insignificant. 
 
The first step is to decide upon the acceptable level of measurement uncertainty for the target 

analyte – that is the difference between the true mean concentration/abundance [  ] and the 

mean of the results obtained [x ].  The relationship between these two mean values is given 

by equation (04) 
 

  =  x   +  tS/ns       [Equation 04] 

 
The next step is to decide upon the level of confidence that is acceptable for the 
measurement.  It is usual to choose a 95% confidence level, which means that in 5% of 

cases,  would be outside the calculated uncertainty limit.  For a normal distribution situation 
and where the value of n > 30: 
 

The value of  ‘t’ approximates to 2. 
 

In developing a sampling plan, equation (04) can be used to calculate how many increments 
are needed to be taken in order to achieve our accepted level of measurement uncertainty.  
Firstly however, we need to obtain a value for ‘S’ (standard deviation) for this particular 
sampling and analysis.  This can be achieved by taking a large number of sample increments, 
analysing the samples and calculating the standard deviation and/or the variance. 
 
If ‘E’ represents the level of total uncertainty we have accepted for this analysis then:   
 

E  = tS/ns     [Equation 05] 

 
Squaring each side gives: 
 

E2  =  t2S2/ns     [Equation 06] 

 
 Or by rearranging gives: 
 

ns  = t2S2/ E2     
[Equation 07] 

 
 
It is therefore possible to calculate the number of sample increments that need to be taken by 
calculating ‘S’, accepting ‘E’ and interpolating ‘t’ from Student’s ‘t’ test table. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2.2 Where the sampling variance is insignificant and the measurement variance is 
significant. 
 
As with the example above, the value of ‘S’ needs to be calculated and ‘E’ needs to be 
agreed. 
 
To calculate ‘S’, a single representative sample is taken and analysed ‘n’ times.  Equation 
(08) may then be applied to calculate the number of replicate analyses that need to be carried 
out from the taking of a single sample. 
 

na  = t2S2/ E2     
[Equation 08] 

 

Example (i) 
 
We shall assume that for a single consignment of material from which 30 replicate sample 
increments were removed and analyses carried out, the value of the standard deviation for 
these measurements was 0.187.  If we set the total uncertainty we are prepared to accept 
between the estimated mean and the actual value to be 0.15, we can now calculate the 
number of increments we shall need to take from any future consignments of this type. 
 

Equation (07) gives us the formula we can use for this calculation in order to calculate ns 
and assuming that we are prepared to have a 95% confidence level then: 
 

                                        ns  =  [22 X (0.187)2]/ (0.15)2 
 

                                             =  [4 X  0.035]/0.0225 
 
                                             =  6.2  
 
 
This calculation shows us that we need to take 7 samples in order to comply with our 
accepted level of measurement uncertainty.  However, we assumed that the value of ‘t’ was 
2, indicating a minimum of 15 sample replicates.  
 
So we now need to carry out some trial and error calculations to hone in on a more accurate 
number.  From table (02) shown at the end of this section, we can see that value of ‘t’ that 
corresponds to the number of degrees of freedom (n – 1). 
 
For     n = 7, t  = 2.45 :  
 
This calculates to a possible error of 0.173, above that deemed to be acceptable. 
 
For     n = 8, t  = 2.36 : 
 
This calculates to a possible error of 0.156, again just above the target of 0.15. 
 
For    n = 9 , t  = 2.31 : 
 
This calculates to a possible error of 0.144, just below the target value. 
 
So the correct answer is 8 or 9. 
 
 
 



Note: as with the example shown above, it will be necessary to carry out a trail and 
error calculation to establish an accurate number once the approximate value has been 
calculated. 
 
2.2.3 Where the sampling and measurement variances are both significant 
 
This is a more difficult situation, as we now need to know individual standard deviations for 
both the sampling and analysis stages.  Equation (09) could be used if sufficient data were 
available or could be calculated: 
 

 

Etotal  =  t  [(Ss
2/ns) + (Sa

2/nsna)]     [Equation 09]  
 
 
Equation (10) may be rewritten as: 
 

(Etotal)
2  =  t2 [(Ss

2/ns) + (Sa
2/nsna)]    [Equation 10] 

 
Where it is suspected that there may be a small but real variation of a component within a 
consignment, then by using the statistical method of ANOVA (analysis of variance), it is 
possible to discriminate between the random error obtained from the analysis and the real 
variation in quality.  For a description of how this may be achieved, learners are directed to: 
http://en.wikipedia.org/wiki/ANOVA 
 

Degrees of Freedom Value of ‘t’ at a confidence level of 95% 

1 12.7 

2 4.30 

3 3.18 

4 2.78 

5 2.57 

6 2.45 

7 2.36 

8 2.31 

9 2.26 

10 2.23 

11 2.20 

12 2.18 

13 2.16 

14 2.14 

>30 1.96 (2) 

 
        Table (02) – values of ‘t’ at the 95% confidence level 
 
3.0      Sampling strategies 
 
In Chapter 2 of this resource, the competing decisions between cost and reliability when 
devising a sampling plan were introduced and expanded upon earlier in this document.  
Figure (02) was used to show this decision making process diagrammatically.  Figure (02) is 
reproduced below: 
 



 
 
             
                              Figure (02 repeated) – selection of samples for analysis 
 
Given the statistical argument that was introduced in section (2) we can now use these 
equations to justify the sampling and analysis suggestions made in the earlier section. 
 
If one analysis is made on ns sample increments then the relationship between true mean and 
the estimated mean is given by equation (04): 
 

  = x  +  tS/ns       [Equation 04] 

 
 

Where ‘S’ relates to the to the overall standard deviation for the sampling and analysis and 
‘S

2
’ is the total variance.  The measurement uncertainty at a chosen confidence level is given 

by: 
 

t [S/ns]       [Equation 11] 

 
If each single sample increment is analysed ‘N’ times, then the measurement uncertainty now 
becomes: 
 

t [(Sa
2/N +  Ss

2)/ ns ]       [Equation 12] 

 
Equation (12) may be rewritten as: 
 

t [(Sa
2/nsN)  +  (Ss

2/ ns)]     [Equation 13] 

 

A 

B 



For maximum analytical reliability we need to minimise the value of equation (13). The term 
‘Sa

2
’, may be reduced by either choosing a more precise analytical method or by increasing 

the number of samples taken ‘ns’.  However if the sampling variance ‘Ss’ is much greater than 
the analysis variance ‘Sa’, then little is to be gained by using different analytical methods.  
Rather it is preferable to take a larger number of sample increments, since the value of ‘t’ is 
dependent upon the value of ‘ns’, and gradually decreases for increasing sample increment 
numbers, up to 15.  
 
Formulae shown in (Equations 11 to 13) may be modified again to take into account the 
sampling and analysis strategy illustrated in Figure (02) whereby the sample increments are 
composited and following sub-sampling, undergo replicate analysis.   
 

t [(Sa
2/N)  + (Ss

2/ ns)]     [Equation 14] 

 
In this instance, as only a single composite sample has been submitted for analysis, the value 
of ‘ns’ becomes 1.  Uncertainty measurements are therefore much larger, than when single 
increments are all analysed, however the costs are considerably reduced. 
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